

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ELECTRONICS AND COMMUNICATION ENGINEERING

VII SEM COURSE OUTCOMES (R16)

SUBJECT	COURSE OUT COMES
NAME	
Microwave And Optical Communications	 CO1. Summarize about different types of modes in wave guides and how to decrease the transmission and power losses, different types of microwave solid state devices and their applications CO2. Attain the knowledge about how these microwaves are generated transmitted, amplified and finally measured using Passive devices. CO3. Describe the fundamentals, advantages ,Ray theory transmission in Optical Communication and effect of dispersion of the signal, types of fiber materials, different losses in fibers CO4. Gain knowledge about Optical transmitters, receivers and estimation of link and power budget analysis.
Digital Signal Processing	 CO1: Analyze the Discrete system in Time and Frequency domain through its respective tools CO2: Demonstrate about Fourier series, DFT and to solve the FFT using DIT & DIF algorithms CO3: Apply Z-transform and Discrete Fourier transform to analyze a digital system. CO4: Design IIR and FIR digital filters for various applications.
Radar Engineering	 CO1. Describe the basic concepts of radar and analyze radar range equation. CO2. Demonstrate the operation and applicability of CW radar. CO3. Summarize the operation and applicability of MTI and tracking radar. CO4. Illustrate the functioning of radar antennas and radar receivers with noise performance.
Cellular & Mobile Communications	 CO1. Design Hexagonal shaped cells and how these are implemented in real world. CO2. Explain different types of antenna systems in mobile communication. CO3. Analyze Handoffs and different types of handoffs and Dropped call rates and their evaluation. CO4. Describe applications of GSM Architecture and GSM channels, multiple access scheme, TDMA, CDMA.

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ELECTRONICS AND COMMUNICATION ENGINEERING

V SEM COURSE OUTCOMES (R19)

SUBJECT	COUDSE OUT COMES
NAME	COURSE OUT COWLES
Linear And Digital Ic Applications	CO1: Demonstrate different applications based on operational amplifier.
	CO2: Explain the applications of waveform generators based on operational amplifier and IC
	CO3: Design and implementation of Combinational circuits using digital ICs.
	CO4: Design and implementation of Sequential circuits using digital ICs.
Microprocessor And Micro Controller	CO1: Explain architecture, instructions and addressing modes of 8086Microprocessor.
	CO2: Develop Assembly programs for various industrial requirements.
	CO3: Analyze 8086 interfacing with different peripherals and implement programs.
	CO4: Design a minimum workable system with 8051Microcontroller.
Antennas & Wave Propagation	CO1: Describe different types of antenna parameters.
	CO2: Solve the fields radiated by various types of antennas.
	CO3: Explain various categories of antennas and antenna arrays.
	CO4 : Analyze and identify the characteristics of radio wave propagation.
Operating Systems Concepts	CO1. Define the Basic concepts about Operating System and its functions.
	CO2. Describe Process management, CPU scheduling and Deadlocks.
	CO3. Analyze Memory management
	CO4. Describe and Implement File systems & Disk Structures .
	CO5. Perform Case Study on LINUX, WINDOWS and Android OS

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ELECTRONICS AND COMMUNICATION ENGINEERING

III SEM COURSE OUTCOMES (R20)

SUBJECT	COURSE OUT COMES
NAME	
	CO1.solve the fundamentals of the theory of analytic functions
Complex	CO2.expand the given function in Tailors series, Maclaurin's series and Laurent's series.
Variables And	CO3.find residues at singular points, able to evaluate integrals.
Random Process	CO4.construct the probability distribution function of random variables.
	CO5.calculate expectations of random variables like variance and moments.
	CO1: Explain the characteristics of different semiconductor diodes and its applications (K2)
Electronic	CO2 Describe the characteristics of Transistors, FET and biasing. (K1)
Circuits-I	CO3: Construct the wave shaping circuits of non sinusoidal signals. (K3)
	CO4: Analyze and design the Multi vibrators using BJT(K4)
	CO1: Describe the different types of number systems and Boolean algebra.(K1)
Digital Electronics	CO2: Explain the minimization techniques and universal gates.(K2)
	CO3: Construct the logic circuits of various combinational circuits.(K3)
	CO4: Explain the behavior of various sequential circuits.(K2,K4)
	CO1:Describe the signal fundamentals in terms of types and how to represent the various signals. (K1)
	CO2:Explain the concept of Fourier series and Fourier transforms to determine the signal and system characteristics.
Cianala And	(K2, K4)
Signals And Systems	CO3:Demonstrate the concept of sampling theorem, convolution and correlation and also signal transmission through
	linear systems. (K3)
	CO4:Demonstrate the concept of ROC (Region Of Convergence) using Laplace and Z- Transforms to analyze the
	continuous and discrete time systems. (K3, K4)
	CO1: Understand the concept of communication system, need for modulation, modulation
	and demodulation techniques in AM.
Analog	CO2: Describe the concepts of DSB-SC, SSB, FM and Pulse Analog modulation techniques.
Communications	CO3: Analyze the transmission and reception of a signal in a communication system by using
	different types of transmitters and receivers.
	CO4: Estimate the effect of noise on AM, DSB-SC, SSB and FM.