

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956. Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF MATHEMATICS

TEACHING PLAN

Cours	e Course Title	Sem	Branches	Contact Periods /Week	Academi Year	ic l comr of t	Date of nencement Semester
201TĄT	01 DISCRETE MATHEMATICS	IV	SE(DS), AIDS	60/16	2023-24	03-	01-2024
COURS	E OUTCOMES: Stud	ents are abl	e to				
1	identify programming	errors effic	ciently through	enhanced lo	ogical capa	bilities (K	(3)
2	find a general solution	of recurren	ice equation (K	.3)			
3	learn set theory, graph	of the relat	ions which are	used in data	a structures	(K3)	
4	explain the concepts in	graph theo	ory (K3)				
5	apply graph theory co effectively. (K3)	ncepts in c	ore subjects su	ch as data s	structures a	nd netwo	rk theory
UNIT	Out Comes / Bloom's Level	Out Comes / Bloom's LevelTopic No.Topics/Activity		etivity	Text Book / Reference	Contact Hour	Delivery Method
			N	lathematic	al Logic		
		1.1	Connectives, negation, conjunction,		$T_1 \& T_2$	1	
	Students are able to	ß	disjunction conditional, bi-condition	al,	T ₁ & T ₂	1	Chalk &
I	identify programming errors efficiently through	1.2	statement and Truth Ta	formula ables	T ₁ & T ₂	1	Talk, Active
	enhanced logical capabilities CO1 (K3)	1.3	well formed formulae, tautologies		T ₁ & T ₂	1	Learning. PPT & Tutorial
	()		equivalence, implication		$T_1 \& T_2$	1	1 4001141
		1.4	equivalence formulae,	of	$T_1 \& T_2$	1	
		1.5	duality, tauto implications	ological	$T_1 \& T_2$	1	

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		1.6	functionally complete set of connectives, other connectives	T ₁ & T ₂	1	
		1.7	principal disjunctive and conjunctive normal forms	T ₁ & T ₂	1	
		1.8	inference calculus, rules of inference	T ₁ & T ₂	1	
		1.9	consistency of premises, indirect method of proof	T ₁ & T ₂	1	_
		1.10	Theory of inference for the statement calculus validity using Truth tables.	T ₁ & T ₂	1	
				Total		12
	Students are able to find a general solution of recurrence equation (K3)	2.1	RECURRENCE	T. T.	NS	
		2.1	of Sequences	& R ₁	1	
		2.2	Calculating Coefficients of	T ₁ & T ₂	1	
			generating functions	T ₁ & T ₂	1	
		2.3	solving recurrence relation by generating	$\begin{array}{c} T_1, T_2 \\ \& R_1 \end{array}$	1	Chalk & Talk.
п			functions	$\begin{array}{c} T_1,T_2\\\&R_1 \end{array}$	1	Active Learning
		2.4	solving recurrence		1	PPT &
			substitution	$T_1 \& T_2$	1	Tutorial
		2.5	the method of Characteristic roots	$\begin{array}{c} T_1, T_2\\ \& R_1 \end{array}$	1	
				T ₁ &T ₂	<u> </u>	
		2.6	Solution of Inhomogeneous	$\begin{array}{c} T_1 & T_2 \\ T_1 & T_2 \\ \& R_1 \end{array}$	1	

Accredited by National Board of Accreditation, AICTE, New Delhi Accredited by NAAC with "A" Grade – 3 32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956. Approved by AICTE. New Delhi Permanent Affiliation to JNTUK Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

				Total		12
			SET THEORY A	ND RELAT	ION	5
		3.1	Relations and ordering, Relations, Properties of binary Relations in a set	T ₁ , T ₂ & R ₁	1	
		3.2	Relation Matrix and the Graph of a Relation	T ₁ , T ₂ & R ₁	1	_
	-	3.3	Partition and covering of a set	$\begin{array}{c} T_1 , T_2 \& \ R_1 \end{array}$	1	
		3.4	Equivalence Relation	$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	
	The student should be able learn set theory,			$\begin{array}{c} T_1 , T_2 \& \ R_1 \end{array}$	1	Chalk & Talk, Active
ш	graph of the relations which are used in data structures.(CO3) (K3).	3.5	Compatibility Relation	$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	Learning,
		3.6	Composition of Binary Relations	$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	Tutorial
			Partial ordering, Hasse diagram	$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	-
		3.7		$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	
			Principle of Inclusion-Exclusion	$T_1, T_2 \& R_1$	1	
		3.8		$\begin{array}{c} T_1, T_2 \& \\ R_1 \end{array}$	1	
		3.9	Pigeon hole principle and its applications	T ₁ , T ₂ & R ₁	1	
				Total		12
			GRAPHS THEORY	TTP.		1
		4.1	Basic Concepts	R_1 , R_2 & R_1	1	-
		4.2	Representation of	$T_1 \& T_2$	1	Chalk &
IV	The student should be		Graph	$T_1 \& T_2$	1	Talk, Active
	able to explain the concepts in graph theory	4.3	Sub graphs, Multigraphs	T ₁ & T ₂	1	PPT & Tutorial
	(CO4) (N3)	4.4	Planar graphs	$T_1 \& T_2$	1	
		4.5		$T_1, T_2 \&$ R ₁	1	

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS) Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956. Approved by AICTE New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

	Euler Paths, Euler circuits	$ \begin{array}{c} T_1, T_2 \& \\ R_1 \end{array} $	1
4.6	Hamiltonian Graphs	T ₁ & T ₂	1
47	Graph Isomorphism	T ₁ & T ₂	1
1.7	Cimpii III I	T ₁ & T ₂	1
4.8	Related Problems	T ₁ & T ₂	1
4.9	Chromatic Number	T ₁ & T ₂	1
 4.9	Chromenter	Total	12

			TR	EES		
		5.1	Spanning Tree	$T_1 \& T_2$	1	
		5.2	Minimal Spanning Trees	T ₁ & T ₂	1	
	The student should be	53	BFS Algorithm	$T_1 \& T_2$	1	
	able to apply graph theory concepts in core subjects such as data structures and network theory effectively. (CO5) (K3)	5.5	Distigentia	$T_1 \& T_2$	1	Chalk &
		5.4 DFS Algorithm	DFS Algorithm	$T_1 \& T_2$	1	Talk, Active
v			DISTIBUTION	T ₁ & T ₂	1	Learning.
		5.5	Kruskal's Algorithm	T ₁ & T ₂	1	PPT &
				T ₁ & T ₂	1	Tutorial
		56	Prim's Algorithm	T ₁ & T ₂	1	
		5.0	T thin 5 th Boston	T ₁ & T ₂	1	
		5.7	Binary trees	$T_1 \& T_2$	1	
		5.8	Planar graphs	T ₁ & T ₂	1	1
				Total		12
		CUMU	LATIVE PROPOSED	PERIODS		60

Text Bo	oks:			
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION			
T1	J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2017.			
T2	Joe L. Mott, Abraham Kandel and T. P. Baker, Discrete Mathematics for computer scientists & Mathematicians, 2/e, Prentice Hall of India Ltd, 2008.			
Referen	e Books:			
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION			
R1	Keneth, H. Rosen, Discrete Mathematics and its Applications, 8/e, Tata McGraw-Hill, 2021			
R2	Richard Johnsonburg, Discrete Mathematics, 8/e, Pearson Education, 2018			
R3	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, 2006.			

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

Web De	etails	
1	https://onlinecourses.nptel.ac.in/noc16_ma01/preview	
2	https://stanford.edu/~rezab/classes/cme305/W17/	
3	https://nptel.ac.in/courses/106106094/	
4	https://nptel.ac.in/courses/111107058/	

		Name	Signature with Date
i.	Faculty	Mr. M. ravindra babu	M. Kun
iii.	Course Coordinator	P. Duga Bhavan	
iv.	Module Coordinator	Dr. E. M. VICTOLQ.	Kay .
v .	Programme Coordinator	Dr. V. Swaminadham	V. Wann

Principal