

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF INFORMATION TECHNOLOGY TEACHING PLAN

Course Code	Course Title	- A 100	semester/ egulation	Branch	Contact Periods /Week	Academic Year	Date of commencement of Semester
20CC4T01	AUTOMAT THEORY A COMPILE DESIGN	ND T	V / (R20)	CSE-BS	6	2023-2024	03-01-2024
COURSE O	DBJECTIVES						
1	To learn fund	lamenta	ls of Regul	ar and Context	Free Gram	mars and Lan	guages
2	To understand	To understand the relation between Regular Language and Finite Automata					
3	To learn how to design Automata machines as Acceptors, Verifiers and Translators						
4	To understand	the bas	sic concept		sign, and it		ases which will
COURSE O	OUTCOMES			T- EI.			19
. 1	Illustrate deter	rministi	c and non-	deterministic fi	nite state m	achines	
2	Employ finite	y finite state machines to solve problems in computing using regular expression				ılar expressions	
3	Demonstrate c	emonstrate context free grammars and lexical analyzer of compiler design					
4	Organize Synt	ntax Analysis by Top down and Bottom up Parsing of a compiler design				npiler design	
5	Commence Statement Charles	ze synthesized, inherited attributes and syntax directed translation schemes are					on schemes and
UNIT	Out Comes / Bloom's Level	Topics No.		Topics/ Activity	Text Book Referen	Hour	Delivery Method
II.		1.1	Need of A	Automata theor	y T1,T2	1	Chalk
1	CO-1	1.2	Central C	oncepts of Theory	T1,T2	1	& Board
1	CO-1	1.3	Finite Au		T1,T2	1	Power point
		1.4		n(al) Systems, se of a String	T1,T2	1	presentations

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited to NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		1.5	DFA, Design of DFAs	T1,R1	1	Assignment
		1.6	NFA, Design of NFA	T1,R1	1	
		1.7	Equivalence of DFA and NFA	T1,R1	1	Test
		1.8	Conversion of NFA into DFA	T1,R1	1	
		1.9	Finite Automata with C- Transitions	T1,R1	1	
		1.10	Minimization of Finite Automata	T1,R1	1	
7 - 39		1.11	Finite Automata with output-Transducers	T1,T2	1	40.00
		1.12	Mealy and Moore Machines equivalence and conversions	T1,T2	1	
- 4		1.13	Applications and Limitation of Finite Automata.	T1,T2	1	
		1	Total:		13	
		2.1	Regular Expressions, Regular Sets, Identity Rules	T1,R2	1	Chalk &
		2.2	Manipulations of REs	T1,R2	1	Board
п	CO-2	2.3	Equivalence between Finite Automata and Regular Expression	T1,R2	1	Power point presentations
**	CO-2	2.4	Inter conversion	T1,R2	1	
		2.5	Closure Properties of Regular Sets, Chomsky Hierarchy Classification of Grammars	T1,R2	1	Assignment Test
		2.6	Right and Left Linear Regular Grammars	T1,R2	1	4
		La osses	Total Total Total	Total:	09	
		3.1	Context Free Grammar	T1,R2	1	
77		3.2	Leftmost and Rightmost Derivations, Parse Trees, Ambiguous Grammars	T1,R2	1	
m	CO-3	3.3	Simplification of Context Free Grammars- Elimination of Useless Symbols, E-Productions and Unit Productions	T1,R2	1	Chalk & Board Power point
		3.4	Chomsky Normal Form of CFG	T1,R2	1	presentations

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 195 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		3.5	Greibach Normal Form of CFG	T1,R2	1	Assignment Test
		3.6	Applications of Context Free Grammars	T1,R2	1	
		3.7	Lexical Analysis: Language Processors	T1,R2	1	
		3.8	Structure of a Compiler	T1,R2	1	
		3.9	The Role of the Lexical Analyzer	T1,T2	1	
		3.10	Input Buffering, Specification of Tokens	T1,T2	1	
		3.11	Recognition of Tokens	T1,R2	1	
	·			Total	11	
		4.1	Syntax Analysis: The Role of the Parser	T1,R2	1	
		4.2	Left Recursion, Left Factoring	T1,R2	1	
		4.3	Top down Parsing: Pre Processing Steps of Top Down Parsing	T1,R2	1	
		4.4	Backtracking-Brute Force parsing	T1,R2	1	
		4.5	Recursive Descent Parsing	T1,R2	1	Chalk & Board
		4.6	Non-recursive Predictive Parsing-LL(0)	T1,R2	1	Power point
IV	CO-4	4.7	Error Recovery in Predictive Parsing	T1,R2	1	presentations
		4.8	Bottom Up Parsing: Introduction	T1,R2	1	Assignment
		4.9	Difference between LR and LL Parsers	T1,R2	1	Test
	3	4.10	Types of LR Parsers, Shift Reduce Parsing	T1,R2	1	TIN
		4.11	SLR Parsers- Construction of SLR Parsing Tables	T1,R2	1	
		4.12	Construction of CLR (1) Parsing Table	T1,R2	1	
		4.13	Construction of LALR Parsing Table	T1,R2	1	
			Total		13	
CC)-5	5.1	Variants of Syntax Trees	T1,T2	1	Chalk

COLLEGE OF ENGINEERING & TECHNOLOGY

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

5.2	Intermediate Code Generation: Three Address Code(TAC)	T1,T2	1	& Board Power point
5.3	Translation of Expressions into TAC	T1,T2	1	presentations
5.4	Intermediate Code for Procedures	T1,T2	1	Assignment
5.5	Code Optimization: The Principle Sources of Optimization	T1,T2	1	Test
5.6	Basic Blocks, Optimization of Basic Blocks	T1,T2	1	
5.7	Structure Preserving Transformations	T1,T2	1	
5.8	Flow Graphs, Loop Optimization, Data-Flow Analysis	T1,T2	1	
5.9	Peephole optimization	T1,T2	1	
5.10	Code Generation: Issues in the Design of a Code Generator	T1,T2	1	
5.11	Object Code Forms	T1,T2	1	
5.12	Code Generation Algorithm	T1,T2	1	
5.13	Register Allocation and Assignment in code generation	T1,T2	1	
		Total	13	
CU	MULATIVE PROPOSED	PERIODS	58	

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 195 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

Text Book	is:
S.No	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1	J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, 3rd Edition, Pearson, 2008
2	K. L. P. Mishra and N. Chandrasekharan, Theory of Computer Science-Automata, Languages and Computation, 3rd Edition, PHI, 2007
3	Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Compilers: Principles, Techniques and Tools, Second Edition, Pearson Publishers, 2007.
Reference	Books:
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1	Dasaradh Ramaiah K, Introduction to Automata and Compiler Design, Kindle Edition, PHI, 15 July 2013
2	Lewis H.P. & Papadimition C.H., Elements of Theory of Computation, 2 nd ed. Pearson /PHI, 2015.
3	V. Kulkarni Theory of Computation, 3rd Edition, Oxford University Press, 2013.
4	Rajendra Kumar, Theory of Automata, Languages and Computation, 1st edition, McGraw Hill, 2014.
5	Kenneth C Louden, Compiler Construction, Principles and Practice, Second Edition , Cengage Learning, 2006.
6	Andrew W Appel ,Modern compiler implementation in C, Revised edition, Cambridge University Press,2004.
7	Randy Allen, Ken Kennedy, Morgan Kauffmann, Optimizing Compilers for Modern Architectures, 1st Edition, Elsevier, 2001.
8	Levine, J.R., T. Mason and D. Brown, Lex and Yacc, 2 nd edition, O'Reilly & Associates 1990.

		1 8	Name	Signature with Date	
i. Faculty		lty	Mr. M.N.V.L.NARAYANA	- Thus	
ii.	Mod	ule Coordinator	Mr. M.N.V.L.NARAYANA	4 mg	
iii.	100	ramme Coordinator	Dr. RVVSV Prasad	1	

Principal