

COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous)

Accredited by NBA, AICTE, NEW DELHI • Accredited by NAAC with "A" Grade – 3.32/4.00 CGPA Recognized by UGC Under Sections 2(f) & 12 (B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliated to JNTU K, Kakinada Seetharampuram, NARSAPUR-534 280, W.G-Dist., Andhra Pradesh

Department of Science & Humanity

TEACHING PLAN

Course Code	Course Title	Semester	Branches	Contact Periods/ Week	Academic Year	Date of Commencement of Semester
20CB5T01	OPERATIONS RESEARCH	V	CSE (BS)	6	2024-25	03.06 .2024

Course Outcomes: After successful completion of this course, students should be able to:

1	Formulate resource management problem and identify appropriate methods to solve them. [K3]
2	Apply transportation model to optimize the industrial resources. [K3]
3	Solve sequencing problems using operation research techniques. [K3]
4	Apply the replacement model to increase the efficiency of the system. [K3]
5	Apply the inventory and queuing model to increase the efficiency of the system. [K4]

Unit	Outcome/Bloom's	Topics	Topics/	Text Book/	Contact	Delivery	
	Level	No.	Activity	Reference	Hour	Method	
		LINEAR PROGRAMMING					
		1.1	Introduction to Operations Research	T_{1}, T_{2}, R_{2}	1	PPT	
		1.2	Linear programming Problem Formulation	T_{1}, T_{2}, R_{2}	1	PPT	
		1.3	Problems based on Linear programming Problem Formulation	T ₁ ,T ₂ ,R ₁	1	PPT,BB	
	Formulate	1.4	Graphical solution	T_1, T_2, R_1	1	PPT,BB	
resource management I problem and identify appropriate methods to solve them. [K3] (CO1)	resource management	1.5	Simplex method introduction and definition	T_1, T_2, R_2	1	PPT,BB	
	problem and	1.6	Simplex method -Simple	T_1, T_2, R_2	1	PPT,BB	
	appropriate		problems	T_1, T_2, R_2	1	PPT,BB	
	methods to solve them. [K3]	1.7	Artificial variable Technic – introduction Big M- Method -introduction,	T1,T2, R2	1	PPT,BB	
		1.8	Big M- Method- Simple	T_1, T_2, R_2	1	PPT,BB	
			problems	T_1, T_2, R_2	1	PPT,BB	
		1.9	Two Phase method-problems	T_1, T_2, R_2	l	PPT,BB	
				T_1, T_2, R_2	1	PPT,BB	
		1.10	Duality Principle-conversion	T_1, T_2	1	PPT,BB	

COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous)

Accredited by NBA, AICTE, NEW DELHI • Accredited by NAAC with "A" Grade – 3.32/4.00 CGPA Recognized by UGC Under Sections 2(f) & 12 (B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliated to JNTU K, Kakinada

Seetharampuram, NARSAPUR-534 280, W.G-Dist., Andhra Pradesh

		1.11	Duality Principle-Problems	T_1, T_2	1	PPT,BB
Total					14	
TRANSPORTATION						
	2.1	Formulation of			PPT,BB	
		Transportation Problem	T_2	1		
			Definitions-Procedure to find	~2		
			optimal solution			
		2.2	Initial basic feasible solution		1	РРТ,ВВ
			(IBFS)by North-West corner	T_{1}, T_{2}, R_{2}	1	
			rule(Procedure & problem)			DDT DD
		2.3	IBFS by Row minimization		1	PP1,BB
			,Column minimization &	T_1, T_2, R_2	1	
			Least Cost Method(Procedure			
		2.4	& problem)			DPT RR
	Apply	2.4	approximation Method			111,00
	transportation		(VAM)(Procedure &	T_1, T_2, R_2	1	
	model to		problem)			
п	optimize the	2.5	MODI method procedure	T_{1}, T_{2}, R_{2}	1	PPT,BB
	industrial			T. T. R.	1	PPT,BB
	(CO2)		with example	11,12, K2		
	(002)	2.6	Ontimal solution for			PPT,BB
			Balanced Transportation	T_{1}, T_{2}, R_{2}	1	
			Problem		1	
					1	
		2.7	Ontimal solution for			PPT,BB
			Unbalanced Transportation		1	
			Problem	1,12,12	1	
					1	
		2.8	Optimal solution for		1	PPT,BB
			Minimization Transportation	T_{1}, T_{2}, R_{2}	1	
			Problem		1	םם דממ
		2.9	problems	T_{1}, T_{2}, R_{1}	1	rri,bb
				Total	14	
SEQUENCINC DDODI EM					7.4	L
		SEQUI	Introduction Ontimal		1	
Solve sequencing problems using operation research techniques. [K3] (CO3)	Solve sequencing	3.1	solution for processing n jobs	Γ_1, Γ_2, R_2	1	PP1,BB
			through 2 machines.	T_1, T_2, R_2	1	PPT,BB
	operation		Optimal solution for		1	PPT.BB
	research	3.2	processing n jobs through 3	- 1, - 2, - 1, 2		
	techniques. [K3]		machines.	T_1, T_2, R_2	1	PPI,BB
	(CO3)	CO3)	Processing n jobs through m	T_1, T_2, R_1	1	PPT,BB
	5.5	machines	T_1, T_2, R_2	1	PPT,BB	

COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous)

Accredited by NBA, AICTE, NEW DELHI • Accredited by NAAC with "A" Grade – 3.32/4.00 CGPA Recognized by UGC Under Sections 2(f) & 12 (B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliated to JNTU K, Kakinada

Seetharampuram, NARSAPUR-534 280, W.G-Dist., Andhra Pradesh

						r
				T_{1}, T_{2}, R_{1}	1	PPT,BB
			i . 2 i l . d	T_{1}, T_{2}, R_{1}	1	PPT,BB
		3.4	processing 2 jobs through m	T_{1}, T_{2}, R_{2}	1	PPT,BB
			machines (Graph)	T_1, T_2, R_1	1	PPT,BB
			1	Total	10	
	REPLACEMENT					
		4.1	Introduction, Definitions	T_1, T_2, R_1	1	PPT
			Replacement of items that	T_1, T_2, R_1	1	ppt,BB
	Annly the	4.2	deteriorate with time when	T_1, T_2, R_1	1	PPT,BB
	replacement		money value is not counted	T_1, T_2, R_1	1	ppt,BB
IV	model to increase		Replacement of items that	T_1, T_2, R_1	1	PPT,BB
	the efficiency of	4.3	deteriorate with time when	T_{1}, T_{2}, R_{1}	1	PPT,BB
	the system. [K3]		money value is counted.	T_1, T_2, R_1	1	PPT,BB
	(CO4)			T_1, T_2, R_1	1	PPT,BB
		4.4	Group Replacement	T_1, T_2, R_1	1	PPT,BB
				T_1, T_2, R_1	1	PPT,BB
Total 10					10	
		WAITIN	GLINES & INVENTORY			
		5.1	Introduction – Definitions	T ₂ ,R2	1	PPT,BB
		5.2	Single channel – poisson	T ₂ ,R2	1	PPT,BB
			arrivals. Exponential Service	T ₂ ,R2	1	PPT,BB
	A market a		times with infinite population	T ₂ ,R2	1	PPT,BB
	Apply the		Introduction, Definitions,	T ₂ R2		PPT.BB
V	aueuing model to	5.3	Concepts of EOQ	- 2 ,	1	
	increase the	5.4	EOQ with uniform demand &	T ₂ ,R2	1	PPT,BB
	efficiency of the		without shortage	T ₂ ,R2	1	PPT,BB
	system. [K4]	5.5	EBQ with uniform demand	T ₂ ,R2	1	PPT,BB
	(CO5)	5.5	& without shortage	T ₂ ,R2	1	PPT,BB
		5.6	EOQ with one price break	T ₂ ,R2	1	PPT,BB
		57	EOQ with multi price breaks	T ₂ ,R2	1	PPT,BB
		5.7		T_1, T_2, R_2	1	PPT,BB
				Total	12	
Cumulative Proposed Periods 60						
Text Books:						
S. No.	Authors, Book Title, Edition, Publisher, Year of Publication					
1	S.D.Sharma, "Operations Research", Kedar Nath Ramnath & co, Meerut-2013					
2	2 P.K.Gupta, D.S.Hira, "Operations Research", S.Chand-2003.					
Referen	Reference Books:					
S. No	Authors, Book Title, Edition, Publisher, Year of Publication					
1	A.M.Natararajan, P.Subramani, A.Tamilarasi, "Operations Research", Pearson-2005.					

COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous) Accredited by NBA, AICTE, NEW DELHI • Accredited by NAAC with "A" Grade – 3.32/4.00 CGPA Recognized by UGC Under Sections 2(f) & 12 (B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliated to JNTU K, Kakinada Seetharampuram, NARSAPUR-534 280, W.G-Dist., Andhra Pradesh

2	2 R.Panneerselvem, "Operations Research", Second Edition, PHI-2007.					
		Name	Signature with Date			
i.	Faculty	Mr. M. Ravindra babu	How when			
ii.	Course Coordinator	Mr. M. Ravindra babu	H.R. J.L.			
iii.	Module Coordinator	Mr. M. Ravindra babu	m. Q gul			
iv.	HOD of S&H	Dr. S. Swaminadham	V. Jueni			

Principal the