

SWARNANDHRA
COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by
NAAC with "A" Grade – 3 32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1958,
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampuram, W.G. DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF CIVIL ENGINEERING

TEACHING PLAN

Course Code	Course Title	Semest er	Bra	anch	Contact Periods /W	cek	Academic Year	Date of commenc ement of Semester	
23CE3T02	STRENGTH OF MATERIALS	III	CI	VIL	05		2024-25	30-07-2024	
COURSE	OUTCOMES								
1	Explain the basic materials behavior under the influence of different external loading Conditions and the support conditions. (K2)								
2	Draw the diagrams indicating the variation of the key performance features like axial Forces, bending moment and shear forces in structural members. (K3)								
3	Acquire knowledge of bending concepts and calculation of section modulus and for determination of stresses developed in the beams. (K3)								
4	Calculate deflections in the beams due to various loading and support conditions. (K3)								
5	Compute stresses across section of the thin, thick cylinders and columns to arrive at optimum sections to withstand the internal pressure using Lame's Equation. (K3)								
UNIT	Out Come Bloom's Lo	0.17-2.001	Topics No.		Topics/Activity	Text Book / Refere nce	Contact Hour	Delivery Method	
	Explain the basic materials behavior under the influence of different external loading Conditions and the support conditions. (K2)		1.1	Elastic	Stresses and Strains: ity and plasticity	T1,R1	1		
			1.2		of stresses and strains	T1,R1	1		
		oasic	1.3	safety,	's law — Factor of Poisson's ratio	T1,R1	1	Chalk &	
		ler _	1.4	probler		T1,R1	1	Talk,	
102			1.5	probler		T1,R2	1	PPT,	
I			1.6	Elastic	nship between constants	T1,R2	1	Tutorial	
		, [1.7	probler	ns	T1,R1	1		
		nd	1.8	probler	ns	T1,R1	1		
		(2)	1.9	stresses	varying section — s in composite bars.	T2,R1	1		
			1.10	probler		T2,R1	1		
			1.11	problen		T2,R1	1		
			1.12	problen	ns	T2,R1	1		

SWARNANDHRA
COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Actredited by National Board of Accreditation, AICTE, New Delhi, Accredited by
NAAC with "A" Grade - 3 32 CGPA Recognized under 2(f) & 12(B) of UGC Ad 1956,
Approved by ACTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Approved by ACTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampuram, W.G. DT., Narsapur-534280, (Andhra Pradesh)

				Tota	1	12
		2.1	Shear Force and Bending Moment: Definition of beam Types of beams	T2,R1	1	
		2.2	Concept of shear force and bending moment	T2,R1	1	
		2.3	Point of contra flexure	T2,R2	1	
		2.4	Relation between S.F., B.M, and rate of loading at a section of a beam;	T2,R1	1	
11	Draw the diagrams indicating the variation of the	2.5	S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads,	T2,R2	1	Chalk of Tall PP1,
	key performance features like axial Forces, bending moment and shear forces in structural members. (K3)	2.6	S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to uniformly distributed loads.	T2,R1	1	
		2.7	S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.	T1,R1	1	
		2.8	Problems	T1,R1	1	
		2.9	Problems	T1,R1	1	
		2.10	Problems	T1,R1	1	
		2.11	Problems	T1,R1	1	1
		2.12	Problems	T1,R1	1	
	Acquire		Flexural and Shear Stresses:	Total		12
	knowledge of bending concepts and calculation	3.1	Flexural Stresses: Theory of simple bending, Assumptions	T2,R1	1	Chalk &
Ш	of section modulus and for	3.2	Derivation of bending equation,	T2,R1	1	Talk, PPT,
	determination of stresses developed in the	3.3	Neutral axis, Determination of bending stresses, section modulus of rectangular and circular sections (Solid and	T1,R2	1	Tutoria

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

NAAC with "A" Grade – 3 32 CGPA Recognized under 2(f) & 12(B) of UGC Ad 1956,
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampurain, W.G.DT., Narsapur-534280, (Andhra Pradesh)

	beams. (K3)		1			711
	(its)	3.4	Hollow), I, T, Angle and Channel	T2 D2		
		3.4	sections, Design of simple beams	T2,R2	1	
		3.5	Problems	T1,R2	1	
		3.6	Shear Stresses: Derivation of formula — Shear stress distribution across various beam sections like rectangular	T2,R1	1	
		3.7	Problems	T1,R2	1	
		3.8	Shear Stresses: Derivation of formula — Shear stress distribution across various beam sections like circular, I, T Angle sections.	T1,R1	1	
		3.9	Problems	T1,R1	1	
		3.10	Problems	T1,R1	1	
		3.11	Torsion – circular shafts only.	T1,R1	1	
		3.12	Problems	T1,R1	1	
		1	D a .: CD D 11	To	otal	12
		4.1	Deflection of Beams: Double integration and Macaulay's methods	T2,R1	1	
	Calculate deflections in the	4.2	Determination of slope and deflection for cantilever subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.	T2,R1	1	Chalk &
	beams due to	4.3	Problems	T1,R2	1	Talk,
IV	various loading	4.4	Problems	T2,R1	1	PPT,
	and support conditions. (K3)	4.5	Determination of slope and deflection for simply supported subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.	T1,R2	1	Tutorial
		4.6	Problems	T2,R1	1	
		4.7	Problems	T1,R1	1	
		4.8	Determination of slope and deflection for overhanging	T1,R1	1	

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with 'A' Grade - 3 32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		4.9	beams subjected to point loads uniformly distributed loads uniformly varying loads partial uniformly distributed loads, couple and combination of these loads. Problems	i, i, i		
		4.10	Problems	T1,R1		_
		4.11	Mohr's theorems — Moment area method — application to simple cases of cantilever.	T1,R1		
		4.12	Problems	T1,R1	1	-
				11,101	Will 2010	10
		5.1	Introduction – Classification of columns – Axially loaded compression members	T2,R1	Total 1	12
	Compute stresses across section of the thin, thick cylinders and columns to arrive at optimum sections to	5.2	Euler's crippling load theory – Derivation of Euler's critical load formulae for various end conditions	T2,R1	1	
		5.3	Problems	T2,R1	1	
		5.4	Problems	T1,R2	1	
		5.5	Equivalent length – Slenderness ratio – Euler's critical stress – Limitations of Euler's theory	T1,R1	1	_
v		5.6	Rankine – Gordon formula – Eccentric loading and Secant formula – Prof. Perry's formula.	T2,R1	1	Chalk & Talk, PPT, Tuto
	withstand the	5.7	Problems	T2,R1	1	Law
	internal pressure using Lame's Equation. (K3)	5.8	Thin and Thick cylindrical shells — Derivation of formula for longitudinal and circumferential stresses — hoop, longitudinal and volumetric strains	T1,R2	1	
		5.9	Problems	T1,R2	1	
		5.10	volume of thin cylinders.	T1,R2	1	

SWARNANDHRA
COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 COPA, Recognized under 2(f) & 12(fi) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Nersapur-534280, (Andhra Pradesh)

	5.11	distribution of hoop and radial stresses across the thickness, compound cylinders- distribution of stresses	T1,R2	1			
	5.12	Problems	T1,R2	1			
		1	Total		12		
		CUMULATIVE PROPOSED PE	CRIODS		60		
Text Boo	ks:						
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1	Strength of Materials by R. K. Bansal, Lakshmi Publications, 16th Edition, 2022.						
2	Strength of Materials by J.K. Gupta and S.K. Gupta, Cengage publications 2nd edition, 2024						
3	Strength of Materials by B. S. Basavarajaiah and P. Mahadevappa, Universities Press 3rd Edition, 2010.						
Reference	e Books:						
S.No.	AUTHORS, BOOK TITLE,	EDITION, PUBLISHER, YEAR OF	PUBLICA	TION			
1	Advanced Mechanics of Solids, L.S Srinath, McGraw Hill Education, 2017, 3rdEdition						
_	Strength of Materials - Fundamentals and Applications, T.D.Gunneswara Rao and						
2	MudimbyAndal, Cambridge University Press, 2018, 1st Edition						
Web Det							
1	https://www.youtube.com/watch?v=IpMZNpWjsk4						

		Name	Signature with Date
i.	Faculty	G.VENKATA RAMANA	84
ii.	Course Coordinator	G.VENKATA RAMANA	\$
iii.	Module Coordinator	A.VENKATA KRISHNA	iful
iv.	Programme Coordinator	G V L N MURTHY	Ins.