

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3 32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G. DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF INFORMATION TECHNOLOGY TEACHING PLAN

Course Code		Course Title		Semester	Branch	Conta Period /Weel	is Acad	lemic ear	Date of commencement of Semester	
201T6E01 DE		ESIGN AND ANALYSIS OF ALGORITHMS		VI	IT	6	202	4-25	5 18-11-2024	
COUR	SE OUT	COMES							*	
1	Analyze the asymptotic runtime complexity of algorithms for real world problems developed using different algorithmic methods. (K4)									
2	Identify	the optim	al solutions	by using a	dvanced d	esign an	d analysis	of algori	thm techniques	
3	like Divide & conquer and greedy method. (K3) Illustrate the fundamentals of Dynamic Programming methods along with its applications. (K2)									
4	Apply the search space and optimization problem techniques like backtracking and branch and bound method to solve problems optimally where advanced algorithm design techniques fail to find solution. (K3)									
5	Distingu formulat	ish the p	roblems an al world pro	d its comp blems to ab	olexity as stract mat	polyno hematic	mial and al problem	NP pro	blems and car	
UNIT	Out Comes / Bloom's Level	Topics No.		Topics/ Activity		1	Text Book/ Reference	Contact Hour	Delivery Method	
		1.1	Introductio	n to Algori	thm		T1,T2	1		
		1.2	Pseudo coo Algorithm	le for expre	ssing		T1,T2	1	Chalk	
		1.3		ce analysis-	space		T1,T2	1	& Board	
		1.4 Time Comple		ysis	T1,T2	T1,T2	1	2000		
		1.5	Asymptotic	c Notations			T1,T2	1	Power point	
I	CO - 1	1.6	probabilistic	analysis			T1,T2	1	presentation	
		1.7	disjoint set	operation			T1,T2	1	Assignment	
		1.8	union and fi	nd algorithn	ıs		T1,T2	1		
		1.9	spanning tr	ees			T1,T2	1	Test	
		1.10	spanning tre	es			T1,T2	1		
14		1.11	connected	components	S		T1,T2	1		
	*	1.12	biconnected	components	3		T1,T2	1		
							Total	12	/	

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		2.1	Divide and Conquer: The General Method	T1,R1	1	
		2.2	Binary search	T1,R1	1	
		2.3	Quick Sort methodology with example	T2,R2	1	
		2.4	Quick Sort algorithm analysis	T2,R2	1	
		2.5	Merge Sort methodology with example	T2,R2	1	Chalk & Board
		2.6	Merge Sort algorithm analysis	T2,R2	1	Doard
		2.7	Strassen's matrix multiplication	T2,R2	1	
II	CO – 2	2.8	Greedy Method: General Method, applications	T1,T2	1	Power point presentation
		2.9	Job Sequencing with deadlines	T1,T2	1	Assissment
		2.10	Knapsack Problem- General Methodology	T1,T2	1	Assignment
		2.11	Examples for Knapsack Problem	T1,T2	1] 1051
		2.12	Minimum cost spanning trees – Prim's algorithm	T1,T2	1	
		2.13	Minimum cost spanning trees – Kruskal's algorithm	T1,T2	1	
		2.14	Single Source Shortest Paths	T1,T2	1	
				Total	14	
		3.1	Dynamic Programming: General Method, Applications	T1,T2	1	
		3.2	Matrix chain multiplication	T1,T2	1	1
		3.3	Optimal Binary Search Trees	T1,T2	1	1
		3.4	Optimal Binary Search Trees	T1,T2	1	Chalk
		3.5	Optimal Binary Search Trees	T1,T2	1	&
		3.6	0/1 Knapsack problem	T1,T2	1	Board
		3.7	0/1 Knapsack problem	T1,T2	1	Power poin
		3.8	All pairs shortest paths	T1,T2	1	presentation
III	CO – 3	3.9	Single Source Shortest Paths— General Weights (Bellman Ford Algorithm)	T1,T2	1	Assignmen
		3.10	Single Source Shortest Paths- General Weights (Bellman Ford Algorithm)	T1,T2	1	Test
		3.11	Travelling Salesperson problem	T1,T2	1	-
		3.12	Travelling Salesperson problem	T1,T2	11	4
		3.13	Travelling Salesperson problem	T1,T2	1	

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade - 3 32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by ACTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		3.14	relaibility design	T1,T2	1	
		3.15		T1,T2	1	
	Content beyond syllabus		Reliability design problem using Dynamic Programming	T1,T2	1	
-	synaous		Dynamic Programma _B	Total	16	,
		4.1	Backtracking: General Method	T1,T2	1	
		4.2	8-Queens Problem constraints	T1,T2	1	
		4.3	State space tree for 8-Queens Problem	T1,T2	1	
		4.4	Sum of Subsets problem	T1,T2	1	
		4.5	Graph Coloring	T1,T2	1	Chalk &
		4.6	Hamiltonian cycles	T1,T2	1	Board
		4.7	Branch and Bound: The General Method	T1,T2	1	Power point
IV	CO - 4	4.8	0/1 Knapsack Problem	T1,T2	1	presentation
		4.9	0/1 Knapsack Problem	T1,T2	1	Assignment
		4.10	Travelling Salesperson problem LC Branch and Bound solution	T1,T2	1	Test
			4.11	Travelling Salesperson problem LC Branch and Bound solution	T1,T2	1
		4.12	Travelling Salesperson problem FIFO Branch and Bound solution	T1,T2	1	
		4.13	Travelling Salesperson problem FIFO Branch and Bound solution	T1,T2	1	
	nt beyond llabus	4.14	Hamiltonian cycles	T 1	1	
Syl	Haous			Total	14	
		5.1	NP Hard and NP Complete Problems	T1,R1	1	Chalk
		5.2	Basic Concepts of NP Hard and NP Complete Problems	T1,R1	1	& Board
		5.3	Cook's theorem	T1,R1	1	
		5.4	non deterministic algorithms	T1,R1	1	Power point
v	CO - 5	5.5	non deterministic algorithms	T1,R1	1	presentation
		5.6	NP Hard Graph Problems	T1,R1	1	
	F	5.7	NP Hard Graph Problems	T1,R1	1	Assignment
	+	5.8	Clique Decision Problem (CDP)	T1,R1	1	т
	-	5.9	Clique Decision Problem (CDP)	T1,R1	1	Test
		3.9	Clique Decision 110010m (==))

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3 32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G. DT., Narsapur-534280, (Andhra Pradesh)

	5.10	Chromatic Number Decision Problem (CNDP)	T1,R1	1				
	5.11	Chromatic Number Decision Problem (CNDP)	T1,R1	1				
		Troblem (CIVDI)	Total	11				
		CUMULATIVE PROPOS	SED PERIODS	67				
Text Books	:							
S. No.	AUTHORS,	BOOK TITLE, EDITION, PUBLIS	HER, YEAR OF	PUBLICAT	rion			
1. 2.	Ellis Horow Universities	itz, SatrajSahni and Rajasekharam, Press.	Fundamentals of (Computer oringer.	Algorithms,			
3	T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein, Introduction to Algorithms, second edition, PHI Pvt. Ltd.							
Reference l								
S.No.	AUTHORS,	BOOK TITLE, EDITION, PUBLISI	HER, YEAR OF I	PUBLICAT	TION			
1	AI oviti	n Introduction to the Design and A	nalysis of Algorit	hms, PEA				
2	2. Parag Him	nanshu Dave, Himansu B Alachand	ra Dave, Design a	ind Allaiys	15 01			
3	3. R.C.T. Lee, S.S. Tseng, R.C.Chang and T.Tsai, Introduction to Design and Analysis of							
4	4. Aho, Ullm	an and Hopcroft, Design and Analy	sis of algorithms	, Pearson e	education.			
Web Details	i:			4				
1	https://www.	tutorialspoint.com/advanced_data_s	structures/index.a	<u>sp</u>				
2	http://peterine	dia.net/Algorithms.html		<u> </u>				
3		ntroduction to Algorithms (youtube	e.com)					

	Name	Signature with Date
Faculty	Mrs. V.Sivani	man zoluhm
Module Coordinator	Mr. K.Raja	K. Br
Programme Coordinator	Dr. RVVSV Prasad	Du Suprad

Principal ,