Swarnandhra College of Engineering & Technology

Autonomous and recognized under 2(F) and 12(B) by UGC

Recognized by AICTE, permanently affiliated to JNTUK Kakinada Accredited by NAAC with 'A' Grade (2nd Cycle)

Seetharamapurm, Narsapur - 530280 (Andhra Pradesh)

DEPARTMENT OF INFORMATION TECHNOLOGY TEACHING PLAN

Course Code	Course Title	B	Semester	Branch	Con Peri /We	tact A ods eek	cademic Year	Date of commencement	
20IT6E01	Design and A of Algorit	nalysis hms	VI	CSE-CS	e	5 20	24-2025	18-11-2024	
COURSE	OUTCOMES	*							
1	Analyze the as developed usin	symptotic ng differe	e runtime co ent algorith	omplexity of mic methods	algoritl	hms for rea	l world pr	oblems	
2	Identify the op techniques like	otimal sol e Divide	utions by u & conquer	using advance and greedy r	ed desig nethod.	gn and anal	ysis of alg	şərithm 🍘	
3	Explain the fundamentals of Dynamic Programming methods along with its applications.								
4	Apply the sear and bound me techniques fail	rch space thod to so to find s	and optim olve proble solution.	ization problems optimally	em tech v where	niques like advanced	backtracl algorithm	king and branch design	
5	Distinguish the formulate som	e problen e real wo	ns and its c orld proble:	omplexity as ms to abstrac	polync t mathe	omial and N matical pro	IP probler blems.	ns and can	
	0.10					Tout		7	
UNIT	Bloom's Level	Topics No.		Topics/ Activity		Book/ Reference	Contac tHour	Delivery Method	
	CO - 1		1.1	Introduct	tion to algorit	hms	T1	1	
		1.2	Process of analysis	of design and of algorithms		T1	1	Chalk	
		1.3	Pseudo c expressir	ode for ng algorithms		T1	1	Board	
r		1.4	Performa Space co	ance Analysis mplexity	8,	T1,R1	1	Power point presentations Assignment Test	
1		1.5	Time cor	nplexity		T1	1		
		1.6	Asympto Big oh no Omega n	otic Notations otation, otation		T1	1		
28.		1.7	Theta no oh notati Analysis	tation and Li on, Probabili	ttle stic	T1,R1	1		
		1.8	Disjoint operation	Sets - disjoin 15	t set	T1,R1	1		

VISION CONDUCT

Swarnandhra College of Engineering & Technology

Autonomous and recognized under 2(F) and 12(B) by UGC

Recognized by AICTE, permanently affiliated to JNTUK Kakinada Accredited by NAAC with 'A' Grade (2nd Cycle)

Seetharamapurm, Narsapur - 530280 (Andhra Pradesh)

		1.9	Union and Find algorithms	T1	1]
		1.10	Spanning trees	T1	1	1
		1.11	DFS and BFS	T1	1	
		1.12	Connected components and bi-connected components	T1	1	
Content be	eyond syllabus	1.13	Mathematical analysis for Recursive and Non- recursive algorithms	R1	1	
		*	1	Total	13	*
		2.1	Divide and conquer: Introduction	T1,T2	1	
		2.2	General method	T1,T2	1	
		2.3	Applications- Binary search	T1,T2	1	
		2.4	Quick sort	T1,T2	1	
		2.5	Merge sort	T1,T2	1	Chalk
П	CO - 2	2.6	Stassen's matrix Multiplication.	T1,T2	1	Board
		2.7	Greedy method: Introduction	T1,T2	1	Power point
		2.8	General method	T1	1	presentations
		2.9	Applications-Job sequencing with deadlines	T1	1	Assignment
		2.10	0/1 knapsack problem	T1.T3	1	1
		2.11	Minimum cost spanning trees	T1	1	- Test
		2.12	Single source shortest path problem	T1	1	
Content be	yond syllabus	2.13	Bellman Ford Algorithm	T1	1	
				Total	13	
III 		3.1	Dynamic programming: Introduction	T1,R1	1	
	•	3.2	General method	T1,R1	1]
		3.3	Applications- Matrix chain multiplication	T1,R1	1	
		3.4	Matrix chain multiplication	T1,R1	1	Chalk
	66.1	3.5	Optimal binary search trees	T1,R1	1	& Board
	CO-3	3.6	Optimal binary search trees	T1,R1	1	Board
		3.7	0/1 knapsack problem	T1,R1	1	Power point
		3.8	0/1 knapsack problem	T1,R1	1	presentations
		3.9	All pairs shortest path	11,R1	1	
		3.10	All pairs shortest path	T1,R1	1	Assignment

Swarnandhra College of Engineering & Technology

Autonomous and recognized under 2(F) and 12(B) by UGC

Recognized by AICTE, permanently affiliated to JNTUK Kakinada

Accredited by NAAC with 'A' Grade (2nd Cycle)

Seetharamapurm, Narsapur – 530280 (Andhra Pradesh)

1 [3.11	Travelling sales person	T1,R1	1	Test
	3.12	problem Travelling sales person	T1,R1	1	
	3 13	problem Reliability design	T1,R1	1	
tent howond syllabus	3.14	Resource Allocation	R1	1	
ontent beyond synabus		Problem	Total	14	
	41	Packtracking: Introduction	T1,T2	1	
	4.1	General method	T1,T2	1	
	4.2	Applications			Challe
	4.5	n gueen problem	T1,T2	1	
	4.4	Sum of subsets problem	T1.T2	1	Chaik
	4.5	Sum of subsets problem	T1.T3	1	Board
	4.6	Hamiltonian cycles	T1,T3	1	Dourd
	4.8	Branch and Bound: Introduction	T1	1	Power point presentations
	10	General method	T1	1	
IV CO-4	4.9	Applications	T1	1	Assignment
	4.10	Travelling sales person	T1	1	Test
	4 12	Sales person problem			
	4.12	0/1 knapsack problem	T1	1	
	4.13	LC Branch and Bound	T1	1	
	4.15	Branch and Bound solution			
	4.16	FIFO Branch and Bound	T1	1	
Content beyond syllabus	4.17	Job Sequencing with	T1	1	
Content beyond symmetry		deadimes	Total	17	*
	5.1	NP Hard and NP Complete	T1,R1	1	Chalk
	5.2	Providents	T1,R1	1	&
	5.2	Non-deterministic	T1,R1	1	Board
V CO-5	5.0	NP-Hard and NP-	T1,R3	1	Power poin presentation
	5.4	Complete classes NP-Hard and NP-	T1,R2	1	Assignmen Test
	5.5	Complete problems	TI D1	1	
10 ·	5.6	Cook's theorem.	11,81	+ 1	
Content beyond syllabus		Approximation Algorithms & Randomized Algorithms	R4	1	
			Tota	1 7	
				1	1

Swarnandhra College of Engineering & Technology

Autonomous and recognized under 2(F) and 12(B) by UGC

Recognized by AICTE, permanently affiliated to JNTUK Kakinada Accredited by NAAC with 'A' Grade (2nd Cycle)

Seetharamapurm, Narsapur – 530280 (Andhra Pradesh)

Text Book	s:					
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION					
1	Ellis Horowitz, SatrajSahni and Rajasekharam, Fundamentals of Computer Algorithms, Universities Press, 2012.					
2	Narasimha Karumanchi, Algorithm Design Techniques, Career Monk, 2018.					
3	T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein, Introduction to Algorithms, second edition, PHI Pvt. Ltd., 2016.					
Reference	Books:					
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION					
1	Anany Levitin, Introduction to the Design and Analysis of Algorithms, PEA, 2018.					
2	ParagHimanshu Dave, Himansu B Alachandra Dave, Design and Analysis of Algorithms, Pearson Education, 2016.					
3	R.C.T. Lee, S.S.Tseng, R.C.Chang and T.Tsai, Introduction to Design and Analysis of Algorithms A strategic approach, McGraw Hill., 2017.					
4	Aho, Ullman and Hopcroft, Design and Analysis of algorithms, Pearson education., 2016					
Web Deta	ils:					
1	https://www.javatpoint.com/daa-tutorial					
2	https://lecturenotes.in/notes/17784-note-for-design-and-analysis-of-algorithm-daa-by-shekharesh-barik?reading=true					
3	https://www.tutorialspoint.com/design_and_analysis_of_algorithms/index.htm					
4	https://www.geeksforgeeks.org/fundamentals-of-algorithms/#AnalysisofAlgorithms					

	·	Name	Signature with Date
i	Faculty	Mr. K.Raja	to Ref
ii	Module Coordinator	Mr. K. Raja	K. K
iii	Programme Coordinator	Dr. RVVSV Prasad	Dussing 2

Principal