

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by ACTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF CIVIL ENGINEERING TEACHING PLAN

Course Code	Course Title	Semest	Bran ch	Contact Periods /Week		Academic Year	Date of commencement of ent of Semester	
23CE4T03	STRUCTURAL ANALYSIS	IV	CE	5	5		16-12-2024	
COURSE	OUTCOMES: U	Jpon succe	essful con	pletion of this course, The student wi	II be able	to		
-1	Apply energy theorems to analyze simple beams and trusses (K3)							
2	Solve indeterminate structures by using Castigliano's-II theorem (K3)							
3	V now the analysis of fixed and continuous beams (K3)							
4	Here alone deflection method for analyzing continuous beams and portal frames (K3)							
5	Analyze continu	ous beam	s and port	al frames by using Moment – distribut	ion mem	od (K4)		
UNIT	Out Comes / Bloom's Level	Topic No.		Topics/Activity	Text Book / Refer ence	Contact Hour	Delivery Method	
I	Apply energy theorems to analyze simple beams and trusses (K3)	1.1	Energy Introductions system	Theorems tion- Strain energy in linear elastic	T3,R2	01	Chalk &	
		1.2	Express	ion of strain energy due to axial	T3,R2	01		
		1.3	force	ion of strain energy due to Shear	T3,R2	01	Board, PPT,	
		1.4	Express moment	ion of strain energy due to Bending	T3,R2	01	Tutorial, videos	
		1.5		ano's first theorem	T3,R2	01		
		1.6		ons of simple beams	T3,R1	02		
		1.7		ons of pin jointed trusses.	T3,R2	02		
		1.8	Exercise	Problems	T3,R2	02		
					Total		11	
-			Analysi	s of Indeterminate Structures	TO DO	01	100	
	Solve indeterminate structures by using Castigliano's—II theorem (K3)	2.1	Indetern	ninate Structural Analysis	T3,R2	01	Chalk &	
II /		2.2	indetern	nation of static and kinematic ninacies	T3,R2	02		
		2.3	Castigli	ano's-II theorem	T3,R2	01	Board,	
		2.4	internal	of trusses with upto two degrees of indeterminacies	T3,R2	02	PPT, Tutorial, videos	
		2.5	external	of trusses with upto two degrees of indeterminacies	T3,R1	02		
		2.6		Problems	T3,R1	02		
	1				Total	60	11	

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

			CUMULATIVE PROPOSED PE			60	
				Total	02	10	
	method (K4)	5.6	without sway. Exercise Problems	T2,R2	02	- 4	
	by using Moment – distribution	5.5	Analysis of single bay storey portal frames	T2,R2 02	02	Tutorial, Videos	
THE STREET		5.4	Application to continuous beams with settlement of supports	T2,R2	02	PPT,	
v	portal frames	5.3	settlement of supports	T2,R2	02	& Board,	
	beams and	0.000000	Application to continuous beams without	T2,R2	01	Chalk	
	Analyze continuous	5.2	Stiffness, carry over and Distribution factors	T2,R2	01		
	Analyza	alyze 5.1	Introduction	T2 P2	01		
	1		Moment Distribution Method:	Total		10	
		4.6	Exercise Problems	T2,R2	02		
	method for analyzing continuous beams and portal frames (K3)	4.5	Analysis of single bay portal frames without sway.	T2,R2	02	& Board, PPT, Tutorial	
IV		4.4	Application to continuous beams with settlement of supports	T1,R2	02		
		4.3	Application to continuous beams without settlement of supports	T1,R2	02		
	deflection	4.2	Derivation of slope deflection equations	T2,R2	01	Chalk	
	Use slope-	4.1	Introduction	T2,R2	01	7	
			Slope-Deflection Method			T**	
				Total	02	18	
		3.14	Exercise Problems	T1,R2	02	videos	
		3.13	Effects of sinking of supports	T2,R2	02		
		3.12	Application of Clapeyron's theorem of three moments	T2,R2	02		
		3.11	Clapeyron's theorem of three moments	T1,R2	01		
		3.10	Continuous beams introduction	T2,R2	01		
		3.9	Effect of rotationof a support	T2,R2	01		
	Know the analysis of fixed and continuous beams (K3)	3.8	Effect of sinking of support	T1,R2	01		
щ		3.7	Deflection of fixed beams	T3R1	01		
		3.6	SFD and BMD for Fixed beam subjected to couple and combination of loads	T1,R2	02	O1 Chalk & Board,	
		3.5	SFD and BMD for Fixed beam subjected to UVL.	T2,R2	01		
		3.4	SFD and BMD for Fixed beam subjected to number of pointloads	T2,R2	01		
		3.3	SFD and BMD for Fixed beam subjected to central point load and eccentric point load		01	9	
		3.2	SFD and BMD for Fixed beam subjected to UDL.	T2,R2	01		
		3.1	Introduction to statically indeterminate beams	T2,R2	01	1	
	 		Fixed Beams & Continuous Beams				

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

Text Boo						
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION					
1	Dr. V.S. Prasad, Structural Analysis 3rd Edition, Galgotia publication, 2015.					
2	G S Pandit, SP Gupta & R Gupta Theory Of Structures, Vol 1, 1st Edition, Tata Mcgraw Hill Publishing Co					
3	S Ramamrutham & R Narayan, Theory Of Structures, 9th Edition, Dhanpat Rai Publishing Company Privat Limited, 2017.					
Referen	ee Books:					
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION					
1	R S. Khurmi, Theory of Structures, 12th Edition, S. Chand Publishers, 2020.					
2	Dr. R. Vaidyanathan & Dr. P.Perumal ,Structural analysis,4th Edition, Laxmi publications, 2019.					
Web De						
1	https://nptel.ac.in/courses/105105166/					
2	https://nptel.ac.in/courses/105101085/					

		Name	Signature with Date
i.	Faculty	Dr. A. Venkata Krishna	AUM6112/24
ii.	Course Coordinator	Dr. A. Venkata Krishna	Aul
iii.	Module Coordinator	Dr. A. Venkata Krishna	Aul
iv.	Programme Coordinator	G V L N Murthy (HOD)	ly

Principal