

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi Accredited by NAAC with "A" Grade -3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
SEETHARAMPURAM, W.G.DT., NARSAPUR-534280, (Andhra Pradesh)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING TEACHING PLAN

TEMORE VOLUME								
Course Code	Course Title	Semester	Branches	Contact Periods /Week	Academic Year	Date of commencement of Semester		
23EC5E0	DIGITAL SYSTEM DESIGN THROUGH HDL	V	ECE A,B	6	2025-26	14/7/2025		
COURSE OUTCOMES After completion of the course students are able to								
1	1 Explain the language constructs and programming fundamentals of Verilog HDL (K2)							
2	2 Select appropriate abstraction levels for designing digital circuits (K3)							
3	Construct combinational & sequential circuits using different modelling styles in Verilog HDL (K3)							
4	4 Design, simulate and verify the functionality of digital circuits/systems using test benches (K4)							

Text Book / Out Comes / **Topics** Contact Delivery **UNIT** Topics/Activity Bloom's Level Method No. Referenc Hour UNIT-I: Introduction to Verilog HDL and Gate Level Modelling: Verilog as HDL, Levels of 1.1 T1, T2 1 **Design Description** 1.2 Basics of Concepts of T1, T2 CO1: Explain the 1 Chalk & Verilog, Talk. language constructs 1.3 Data Types T1, T2 1 1 and programming Smart 1.4 T1, T2 fundamentals of System Task, Board Verilog HDL.(K2) and 1.5 Compiler directives, T1, T2 1 PPT 1.6 Modules and ports. T1, T2 1 1.7 AND Gate Primitive, T1, T2 Module Structure 1

		1.8	Other Gate Primitives,	T1, T2	1	
		1.9	Illustrative Examples,	T1, T2	1	•
		1.10	Tri-State Gates,	T1, T2	1	-
		1.11	Array of Instances of Primitives,	T1, T2	1	
		1.12	Additional Examples,	T1, T2	1	
		1.13	Design of Flipflops with Gate Primitives,	T1, T2	1	
		1.14	Delay	T1, T2	1	•
		1.15	Programs examples	T1, T2	1	
		ı	<u> </u>	Total	15	
			UNIT-II: Behavi	oural Model	ling:	
	CO2: Select	2.1	Introduction,	T1, T2	1	
	appropriate abstraction	2.2	Structuredprocessors,	T1, T2	1	
	levels for designing digital circuits.(K3)	2.3	procedural assignments,	T1, T2	1	
		2.4	timing controls,	T1, T2	1	Chalk &
		2.5	conditional statements,	T1, T2	1	Talk,
		2.6	multi-way branching,	T1, T2	1	Smart
2		2.7	loops, sequential and parallel blocks	T1, T2	1	Board and
		2.8	generate blocks,	T1, T2	1	PPT
		2.9	Multiplexers,	T1, T2	1	
		2.10	Flip-flops, Registers &	T1, T2	1	
		2.11	Counters in Behavioral model.	T1, T2	1	
		2.12	Programs examples	T1, T2	1	
		2.12	1 Tograms examples	Total	12	
		UNIT	-III: Modelling at Data flow Le		12	l
		3.1	Introduction,	T1, T2	1	
	CO3- Construct	3.2	Continuous Assignment Structures,	T1, T2	1	
	combinational and sequential circuits	3.3	Delays and Continuous Assignments,	T1, T2	2	Chalk &
	using different	3.4	Assignment to Vectors,	T1, T2	2	Talk, Smart
3	modelling styles in Verilog HDL.(K3)	3.5	Operators, Design of Decoders,	T1, T2	2	Board
		3.6	Multiplexers,	T1, T2	2	and PPT
		3.7	Flip-flops,	T1, T2	1	FFI
		3.8	Registers	T1, T2	1	
		3.9	Counters in dataflow model.	T1, T2	1	
				Tot	al 13	
4		UNIT.	-IV: Switch Level Modelling &			<u> </u>
-	1			- /	010 0400	

	CO3: Construct	4.1	Introduction,	T1, T2	1	_
	combinational and	4.2	Basic Transistor Switches,	T1, T2	1	
	sequential circuits	4.3	CMOS Switch,	T1, T2	1	
	using different modelling styles in	4.4	Bi-directional Gates,	T1, T2	1	
	Verilog HDL.(K3)	4.5	Time Delays with Switch	T1, T2	1	
			Primitive delays.		1	
		4.6	Introduction to Synthesis.	T1, T2	1	Chalk & Talk,
		4.7	Synthesis of combinational logic,	T1, T2	1	Smart Board and
		4.8	Synthesis of sequential logic with latches and flip-flops	T1, T2	1	PPT
		4.9	Synthesis of sequential logic with latches and flip-flops	T1, T2	2	
			<u> </u>	Total	10	
		UNIT	Γ-V: Components Test and Verific	eation:		•
		5.1	Test Bench –	T1, T2	1	C1 11 0
5	CO4: Design, simulate, and verify the functionality of digital circuits/systems using test benches.(K 4)	5.2	Combinational Circuits Testing,	T1, T2	2	Chalk & Talk, Smart
		5.3	Sequential Circuits Testing,	T1, T2	2	Board
		5.4	Test Bench Techniques,	T1, T2	2	and PPT
		5.5	Design Verification,	T1, T2	2	
		5.6	Assertion Verification	T1, T2	1	
	1		•	Total	10	
			Cumulative Propo	sed Periods	60	

Text Book	is:						
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1.	Samir Palnitkar, "Verilog HDL A Guide to Digital and Synthesis", 2 nd Edition, Pearson Education, 2006.						
2.	Michael, D. Ciletti, "Advanced digital design with the Verilog HDL", Pearson Education India,2005.						
Reference	Reference Books:						
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1.	Padmanabhan, Tripura Sundari -Design through Verilog HDL, Wiley, 2016						
2.	S. Brown, Zvonko – Vranesic, Fundamentals of Digital Logic with Verilog Design, TMH, 3 rd Edision 2014.						
3.	J. Bhasker, A Verilog HDL Primer 2 nd edition, BS Publications, 2001.						

Web Details					
1.	https://www.scribd.com/presentation/70743855/DSD-Using-HDL-co-623-1				
2.	https://www.slideshare.net/slideshow/overview-of-digital-design-with-verilog-hdl/248204914				

		Name	Signature with Date
i.	Faculty	G.B.CHRISTINA.	Winh25.
ii.	Course Coordinator	G.B.CHRETINA	Wyultas
iii.	Module Coordinator	Dr. B. Ramana Kumar	18 auto
iv.	Programme Coordinator	Dr.B.S.Rao	Bulu

PRIROPIPAL
Swarnandhra College of Engineering & Technology SEETHARAMAPURAM