ACADEMIC REGULATIONS

(Choice Based Credit System)

Computer science and Engineering

(Artificial Intelligence & Machine Learning)

M. Tech (Regular-Full time)

(Effective for the students admitted into I year from the Academic Year 2025-26 onwards)

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

SEETHARAMAPURAM, NARSAPUR - 534280, W.G.DT., A.P.

Vision and Mission of the Institute

Vision:

"To produce global competent, ethical and dynamic professionals by creating Centre of Excellence in Technical Education for societal empowerment."

Mission:

- To provide quality education with knowledge and skills for rural and urban students.
- To collaborate the industries with academia for empowering the students to meet global standards
- > To induce highly ethical entrepreneurship in young minds with good leadership quality for the society.
- To enhance the institution in Research and Development by human intellectual capability.

Vision and Mission of the Department

Vision:

To empower Computer Science Engineers as highly proficient, innovative, self-driven, and socially responsible professionals by offering a multidimensional education.

Mission:

- M1: Empowerment of Computer Science Engineers: To empower Computer Science Engineers through comprehensive education, fostering high proficiency.
- **M2: Multidimensional Education Focus:** To provide a diverse education, equipping engineers with skills to navigate the global needs
- **M3: Development of Proficiency and Innovation:** To ensure graduates are well-prepared to address technical issues with creativity and innovation.
- M4: Social Responsibility and Professional Excellence To in-still a strong sense of commitment, shaping graduates into socially responsible professionals and self-driven.

Programme Education Objectives (PEOs)

Mapping of Mission statements to PEOs:

Mission	PEO1	PEO2	PEO3	PEO4
Statement				
MS1	✓	✓	√	✓
MS2	✓	✓	√	✓
MS3	√	√		√
MS4		√	√	√
MS5		√	√	√
MS6			√	√

PEO1: To impart a strong foundation in mathematics, basic sciences, and engineering principles for solving complex AIML problems with analytical thinking.

PEO 2: To enable graduates to design, develop, and deploy intelligent systems using advanced algorithms and AI/ML techniques for real-world applications.

PEO 3: To promote innovation, research aptitude, and critical thinking through hands-on labs, seminars, and project-based learning in AIML.

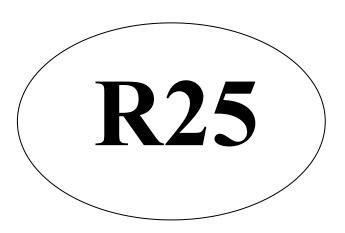
PEO4: To nurture professionalism, ethics, teamwork, and communication skills, preparing graduates for success in industry, academia, and society.

Programme Outcomes (POs):

PO1: An ability to independently carry out research/investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program


PO4: Apply principles of mathematics, science, and engineering to analyze and solve complex problems across diverse domains.

PO5: Design effective engineering solutions and systems with consideration for societal, environmental, and safety constraints.

PO6: Identify, formulate, research, and analyze complex problems in Computer Engineering using principles of mathematics, natural sciences, and engineering sciences.

Mapping of Programme Outcomes to PEOs

Programme	PEO1	PEO2	PEO3	PEO4
Outcomes				
PO1	√	✓	✓	
PO2			✓	✓
PO3	√	✓	✓	✓
PO4	✓	✓	✓	
PO5		√		√
PO6	√	✓	✓	

M.Tech

CSE (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Programme Course Structure & Syllabus

ACADEMIC REGULATIONS - R25 FOR M. Tech (REGULAR) DEGREE COURSE

Applicable for the students admitted to M. Tech (Regular) Course from the Academic Year 2025-26 and onwards. The M. Tech Degree of Jawaharlal Nehru Technological University Kakinada shall be conferred on candidates who are admitted to the program and who fulfil all the requirements for the award of the Degree.

1.0 ELIGIBILITY FOR ADMISSIONS

Admission to the above program shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates

- (i) in national level qualifying Entrance Test (GATE),
- (ii) AP PGECET conducted by State Government and
- (iii) Few Sponsored seats notified by university on the basis of any order of merit as approved by the State Government /University, subject to reservations as laid down by the Government from time to time.

2.0 AWARD OF M. Tech DEGREE

- 2.1 A student shall be declared eligible for the award of the M. Tech Degree, if he pursues a course of study in not less than two and not more than four academic years. Under any circumstances, permission shall not be given to complete the course work beyond four years.
- 2.2 The student shall register for all 80 credits and secure all the 80 credits.
- 2.3 The minimum instruction period in each semester is 16 weeks.

3.0 ATTENDANCE

- 3.1 Attendance is calculated separately for each course. Attendance in all classes (Lectures/Laboratories) is compulsory. The minimum required attendance in each course is 75%. A student shall not be permitted to appear for the Semester End Examinations (SEE), if his/her attendance is less than 75%.
- 3.2 Condoning of shortage of attendance (between 65% and 75%) up to a maximum of 10% (considering the days of attendance in sports, games, NSS activities and medical exigencies) in each course (Theory/Lab/Seminar) is condoned on production of valid Certificates/documents in the stipulated time mentioned here with:
 - 3.2.1 Students who are admitted as in patients for treatment are only eligible to claim condonation of attendance. Such students under medical exigencies need to Produce (a) Doctor Medical Prescription, (ii) Medical bills duly signed by Doctor/Hospital authorities, (c) Diagnosis reports, if any, (d) Discharge summary issued at the time of discharge and any other supporting documents within two week(s) from the date of discharge to the respective institution.

<u>Note</u>: University at any point of time can inform the institution(s) to submit such list/proofs. *Hence, respective institution shall verify and accord condonation privilege scrupulously.*

- 3.2.2 Students' participation in Sports/Games and NSS activities shall also be permitted for condonation of attendance. In such cases, they need to produce (a) invitation letter from the organizing institute/agency, (ii) participation certificate and any supporting documents within two week(s) from the date of participation to the respective institution
- 3.3 A prescribed fee per course shall be payable for condoning shortage of attendance after getting the approval of College Academic Committee for the same. The College Academic Committee shall maintain all the relevant documents along with the request from the students, whose attendance is condoned.
- 3.4 Shortage of Attendance below 65% in any course shall in no case be condoned.
- 3.5 A Student, whose shortage of attendance is not condoned in any course(s) (Theory/Lab/Seminar) in any Semester, is considered as 'Detained in that course(s), and is not eligible to write Semester End Examination(s) of such Course(s), (in case of Seminar, his/her Seminar Report or Presentation are not eligible for evaluation) in that Semester; and he/she has to seek re-registration for those course(s) in subsequent Semesters, and attend the same as and when offered.
- 3.6 A student shall put in a minimum required attendance in at least FOUR courses in I semester for promotion to II Semester; and at least FOUR courses in II semester for promotion to III Semester.

Re-admission / re-registration

- 3.7 A student shall not be permitted to appear for the Semester End Examinations (SEE) in a course unless they meet the prescribed attendance requirements for that course. Such students may take readmission for the course in the subsequent semester when it is offered by paying the prescribed fee, at least 30 days before the commencement of classwork. The college must obtain permission from the University by submitting the list of students eligible/applied for readmission before the commencement of classwork
- 3.8 Students who fail due to **less internal marks (less than 50%)** may register for the course within the maximum permissible duration of the Program.

- 3.9 In such a case, the candidate must re-register for the course(s) and secure the required minimum attendance. The candidate's attendance in the re-registered course(s) shall be calculated separately to decide upon eligibility for writing the end examination in those course(s).
- 3.10 In a semester, students are permitted to re-register maximum of THREE courses.
- 3.11 Upon re-registration, the student's previous performance in the respective course(s) will be nullified. Re-registration must be completed by paying the prescribed fee at least 30 days prior to the commencement of classwork. The college is required to obtain approval from the University by submitting a list of eligible and interested students before the start of commencement of classwork.

4.0 EVALUATION

The performance of the candidate in each semester shall be evaluated course-wise, with a maximum of 100 marks for theory and 100 marks for practical, on the basis of Internal Evaluation and End Semester Examination.

- 4.1 For the theory courses 60 marks shall be awarded based on the performance in the End Semester Examination and 40 marks shall be awarded based on the Internal Evaluation. The continuous / internal evaluation shall be made based on the average of the marks secured in the two CIE/Mid Term-Examinations conducted-one in the middle of the Semester and the other immediately after the completion of instruction. Each CIE/midterm examination shall be conducted for a total duration of 120 minutes with 4 questions (without choice) each question for 10 marks. End semester examination is conducted for 60 marks for all FIVE (5) questions (one question from one unit) to be answered (either or).
- 4.2 For practical courses, 60 marks shall be awarded based on the performance in the End Semester Examinations and 40 marks shall be awarded based on the day-to-day performance as Internal Marks. The internal evaluation based on the day-to-day work-10 marks, record- 10 marks and the remaining 20 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the examiners, with breakup marks of Procedure-15, Experimentation- 25, Results-10, Viva-voce-10.
- 4.3 For Seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Project Review Committee consisting of Head of the Department, supervisor/mentor and two other senior faculty members of the department. For Seminar, there will be only internal evaluation of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 4.4 A candidate shall be deemed to have secured the minimum academic requirement in a course if he secures a minimum of 40% of marks in the End semester Examination and a minimum aggregate of 50% of the total marks in the End Semester Examination and Internal Evaluation taken together.
- 5.7 Laboratory examination for M. Tech. courses must be conducted with two Examiners, one of them being the Laboratory Class Teacher or teacher of the respective college and the second examiner shall be appointed by the University from the panel of examiners submitted by the respective college.
- 5.8 Students shall undergo mandatory summer internship / industrial training (3 credits) for a minimum of **eight weeks duration** at the end of second semester of the Programme/Summer Break. A student will be required to submit a summer

- internship/industrial training report to the concerned department and appear for an oral presentation before the committee. The Committee comprises of a HoD / Professor of the department and two faculty. The report and the oral presentation shall carry 40% and 60% weightages respectively. For summer internship / industrial training, there will be only internal evaluation of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 5.9 The objective of comprehensive viva-voce is to assess the overall knowledge of the student in the relevant field of Engineering/Specialization in the PG program. Viva will be conducted in 3rd semester. The examination committee will be constituted by the HoD and consist of Professor of the department and two faculty. For comprehensive viva-voce, there will be only internal evaluation of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.

6.0 EVALUATION OF SEMINAR/INTERNSHIP/DISSERTATION WORK

All the students admitted under these regulations have to mandatorily comply the requirements of (i) Seminar-I, (ii) Seminar-II, (iii) Comprehensive Viva, (iv) Dissertation Part-A and (v) Dissertation Part-B. Out of these, (i) to (iv) are evaluated by internally by Project Review Committee (PRC) and (v) External Evaluation.

- 6.1 A Project Review Committee (PRC) shall be constituted with Head of the Department and Two other senior faculty members in the department.
- 6.2 Students are required to appear for Seminar-I and Seminar-II in First and Second semester respectively. They shall present before PRC on the topic of their choice/interest preferably on the courses listed in respective semesters. PRC shall advise the students in advance to select topics which strengthen their Dissertation Part-A and Dissertation Part-B.
- 6.3 Students shall undergo mandatory summer internship / industrial training (2 credits) for a minimum of eight weeks duration at the end of second semester of the Programme/Summer Break. A student will be required to submit a summer internship/industrial training report to the concerned department and appear for an oral presentation before PRC. The report and the oral presentation shall carry 40% and 60% weightages respectively. For summer internship / industrial training, there will be only internal evaluation of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 6.4 The objective of comprehensive viva-voce is to assess the overall knowledge of the student in the relevant field of Engineering/Specialization in the PG program. Viva will be conducted in 3rd semester. For comprehensive viva-voce, there will be only internal evaluation of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 6.5 Registration of Dissertation/Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the courses, both theory and practical and duly approved by PRC.
- 6.6 After satisfying 6.5, student has to submit, in consultation with his project supervisor, the title, objective and plan of action of his project work for approval
- 6.7 If a candidate wishes to change his/her supervisor or topic of the project, he/she can do so with the approval of PRC. However, the PRC shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

- 6.8 Continuous assessment of Dissertation-Part A and Dissertation-Part B during the Semester(s) will be monitored by PRC. *Dissertation-Part A* will be only internal evaluation by PRC for 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 6.9 The candidate shall submit a status report to the PRC in two stages, each accompanied by an oral presentation, with a minimum interval of three months between the two.
- 6.10 The work on the project shall be initiated at the beginning of the III Sem and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis (*Dissertation Part A & Part B*) only with the approval of PRC not earlier than 40 weeks from the date of registration of the project work.
- 6.11 Three copies of the project thesis, printed on both sides of the page and certified by the supervisor, shall be submitted to the College/Institute along with the plagiarism report.
- 6.10 The thesis shall be adjudicated by one examiner selected by the University. For this, the Principal of the College shall submit a panel of 5 examiners, eminent in that field, with the help of the guide concerned and head of the department.
- 6.11 If the report of the examiner is not favorable, the candidate shall revise and resubmit the Thesis, in the time frame as decided by the PRC. If the report of the examiner is not favorable again, the thesis shall be summarily rejected. The candidate has to reregister for the project and complete the project within the stipulated time after taking the approval from the University.
- 6.12 If the report of the examiner is favorable, Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the examiner who adjudicated the Thesis. The Head of the Department shall coordinate and make arrangements for the conduct of Viva-Voce examination. The Board shall jointly report the candidate's work for a maximum of 100 marks. Corresponding grade will be awarded by the University.
- 6.13 If the report of the Viva-Voce is unsatisfactory (i.e., < 50 marks), the candidate shall retake the Viva-Voce examination only after three months. If he fails to get a satisfactory report at the second Viva-Voce examination, the candidate has to reregister for the project and complete the project within the stipulated time after taking the approval from the University.

7.0 Cumulative Grade Point Average (CGPA)

Marks Range (Max – 100)	Letter Grade	Level	Grade Point
≥ 90	S	Outstanding	10
≥80 to <90	A	Excellent	9
≥70 to <80	В	Very Good	8
≥60 to <70	С	Good	7
≥50 to <60	D	Fair	6
<50	F	Fail	3
		Absent	0

Computation of SGPA

- The following procedure is to be adopted to compute the Semester Grade Point Average(SGPA) and Cumulative Grade Point Average(CGPA):
- The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e

SGPA (Si) =
$$\sum$$
 (Ci X Gi) / \sum Ci

■ Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

Computation of CGPA

■ The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semester of a Programme, i.e.

$$CGPA = \sum (Ci \times Si) / \sum Ci$$

- Where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.
- The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- Equivalent Percentage = $(CGPA 0.5) \times 10$

8.0 AWARD OF DEGREE AND CLASS

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of M. Tech. Degree he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	
First Division with Distinction	≥ 7.5 (without supplementary History)	From the CGPA secured from 80
First Class	≥ 6.5	credits
Second Class	\geq 6.0 to < 6.5	

The secured grade, grade points, status and credits obtained will be shown separately in the memorandum of marks.

If a student wants to leave the program / exit after successful completion of first two semesters, he/she will be awarded Post Graduate Diploma in the specialization concerned.

9.0 WITH HOLDING OF RESULTS

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

10.0 GENERAL

- 10.1 Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- 10.2 The academic regulation should be read as a whole for the purpose of any interpretation.
- 10.3 In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- 10.4 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	Both the candidates involved in the malpractice will forefeit their seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

Smuggles in the Answer book or additional Expulsion from the examination hall and 4. sheet or takes out or arranges to send out the cancellation of performance in that subject and question paper during the examination or all the other subjects the candidate has already answer book or additional sheet, during or appeared including practical examinations and project work and shall not be permitted for the after the examination. remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work University examinations. continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. Uses objectionable, abusive or offensive Cancellation of the performance in that subject. language in the answer paper or in letters to the examiners or writes to the examiner 5. requesting him to award pass marks. Refuses to obey the orders of the Chief In case of students of the college, they shall be Superintendent/Assistant expelled from examination halls Superintendent / any officer on duty or cancellation of their performance in that subject misbehaves or creates disturbance of any and all other subjects the candidate(s) has (have) kind in and around the examination hall or already appeared and shall not be permitted to organizes a walk out or instigates others to appear for the remaining examinations of the walk out, or threatens the officer-in charge subjects of that semester/year. The candidates or any person on duty in or outside the also are debarred and forfeit their seats. In case examination hall of any injury to his person of outsiders, they will be handed over to the or to any of his relations whether by words, police and a police case is registered against either spoken or written or by signs or by them. visible representation, assaults the officer incharge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.

7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.

11.	Copying detected on the basis of internal evidence, such as, during valuation or during	Cancellation of the performance in that subject and all other subjects the candidate has appeared					
	special scrutiny.	including practical examinations and project					
		work of that semester/year					
		examinations.					
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.						

Malpractices identified by squad or special invigilators:

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
 - (i) A show cause notice shall be issued to the college.
 - (ii) Impose a suitable fine on the college.
 - (iii) Shifting the examination center from the college to another college for a specific period of not less than one year.

I - Semester

S. No.	Course Code	Course Title	L	T	P	C	IM	EM	Total
1		ProgramCore-1 Data Science & Applications	3	1	0	4	40	60	100
2		ProgramCore-2 Artificial Intelligence	3	1	0	4	40	60	100
3		ProgramCore-3 Advanced data structures and algorithms	3	1	0	4	40	60	100
4		Professional Elective–I	3	0	0	3	40	60	100
5		Professional Elective–II	3	0	0	3	30	70	100
6		Laboratory-1 Artificial Intelligence Lab	0	1	2	2	40	60	100
7		Laboratory-2 Data Wrangling Lab	0	1	2	2	40	60	100
8		Seminar-I	0	0	2	1			
		TOTAL	15	5	6	23			

<u>List of Professional Elective Courses in I Semester (Electives– I & II)</u>

S.No.		Course code	Course Title				
1	Professional Elective–I		Advanced datamining				
2			Mining Massive Data Sets				
3			High performance computing				
4			Augmented Reality and Virtual Reality				
5	Professional Elective–II		Recommender Systems				
6	Elective-II		Time Series Analysis				
7			Swayam 12 week MOOC course Suggested by BOS				

@ Minimum 2 / 3 themes per elective

II - Semester

S. No.	Course Code	Course Title	L	T	P	C	IM	EM	Total
1		ProgramCore-4 Machine Learning	3	1	0	4	40	60	100
2		ProgramCore-5 Deep Learning	3	1	0	4	40	60	100
3		ProgramCore-6 Mathematics for Machine Learning	3	1	0	4	40	60	100
4		Professional Elective–III	3	0	0	3	40	60	100
5		Professional Elective-IV	3	0	0	3	40	60	100
6		Laboratory-3 Deep Learning Lab	0	1	2	2	40	60	100
7		Laboratory-4 Machine Learning Lab	0	1	2	2	40	60	100
8		Seminar–II	0	0	2	1			
		TOTAL	15	5	6	23			

^{*}During the summer break, students need to pursue Summer Internship / Industrial Training, it will be evaluated in the III Sem.

<u>List of Professional Elective Courses in II Semester (Electives III & IV)</u>

S. No.		Course code	Course Title				
1			Cloud Computing				
2	Professional Elective–III		Reinforcement Learning				
3	Elective-III		Generative AI				
4			Computer Vision				
5	Professional		Quantum Computing				
6	Elective-IV		Soft computing				
7			Swayam 12 week MOOC course Suggested by BOS				

III - Semester

S. No.	Course Code	Course Title	L	T	P	C	IM	EM	Total
1		Research Methodology and IPR / Swayam 12 week MOOC course— RM&IPR	3	0	0	3	40	60	100
2		Summer Internship / Industrial Training (8-10 weeks)*	-	-	-	3	100	-	100
3		Comprehensive Viva#	-	-	-	2	100	-	100
4		Dissertation Part–A ^{\$}	-	-	20	10			
		TOTAL	3	-	20	18			

^{*} Student attended during summer / year break and assessment will be done in 3rd Sem.

IV - Semester

S.No.	Course Code	Course Title	L	Т	P	C	IM	EM	Total
1		Dissertation Part– B%	-	-	32	16			
	TOTAL		-	-	32	16			

[%] External Assessment

[#] Comprehensive viva can be conducted courses completed up to second sem.

^{\$} Dissertation–Part-A, internal assessment

I Semester	DATA SCIENCE & APPLICATIONS	L	T	P	C
		3	1	0	4

Course Objectives:

The objective of this course is to cover the fundamentals of neural networks as well as some advanced topics such as recurrent neural networks, long short-term memory cells and convolution neural networks.

- Explain the concepts of modules, packages, and advanced module usage in Python programs
- ➤ Evaluate and implement tools and techniques for persistent data storage and Python/C integration.
- ➤ Understand the basics of **NumPy arrays** and their applications in fast, element-wise computations.
- ➤ Apply data wrangling techniques including cleaning, transforming, merging, and reshaping datasets.
- ➤ Understand the basics of **matplotlib** and its API for creating visual representations of data.

Course Outcomes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Explain how data is collected, managed and stored for data science.	K2
CO2	Understand the key concepts in data science, including their real-world	K2
	Applications and the tool kit used by data scientists.	
CO3	Implement data collection and management scripts using Python Pandas	К3
CO4	Ability to efficiently pre process, wrangle, and aggregate data from diverse	К3
	Sources for effective analysis and transformation.	
CO5	Ability to visualize and analyze data using matplot lib and pandas, including	K4
	Timeseries and financial data applications.	

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	Н	L	Н	Н	L	Н
CO3	M	M	Н	Н	Н	Н
CO4	Н	L	Н	Н	M	Н
CO5	Н	M	Н	Н	M	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	PYTHON Basics and Programming Concepts: Introducing Python, Types	12
	and Operations - Numbers, Strings, Lists, Tuples, Dictionaries, Files,	
	Numeric Types, Dynamic Typing; Statements and Syntax - Assignments,	
	Expressions, Statements, Loops, iterations, comprehensions; Functions -	
	Function Basics, Scopes, Arguments, Advanced Functions; Modules -	
	Module Coding Basics, Module Packages, Advanced Module Topics;	
	Classes and OOP-Class, Operator Overloading, Class Designing;	
	Exceptions and Tools-Exception Basics, Exception Coding Details,	
LINUT 1	Exception Objects, Designing With Exceptions, Parallel System Tools	10
UNIT-2		12
	options, Adding Widgets, GUI Coding Techniques, Customizing Widgets;	
	Internet Programming - Network Scripting, Client Side scripting,	
	Pymailgui client, server-side scripting, Pymailegi server; Tools and	
	Techniques-data bases and persistence, data structures, text and language, python/cintegration	
LINUT 2		12
UNII-3	Pandas and NumPy: Numpy Basics - Fast Element wise array functions,	12
	Multidimensional Array, Data Processing using arrays, file i/o with arrays; Pandas - Data Structures, Essential Functionality, Summarizing and	
	Computing Descriptive Statistics, Handling Missing Data, Hierarchical	
	Indexing	
UNIT-4		12
01111-4	and Writing data in text format, binary data formats, interacting with html	12
	and web apis, interacting with databases; Data Wrangling: Clean,	
	Transform, Merge, Reshape - Combining and Merging Data Sets,	
	Reshaping and Pivoting, Data Transformation, String Manipulation; Data	
	Aggregation and Group Operations – Group by Mechanics, Data	
	Aggregation, Group by Operations and Transformations, Pivot Tables and	
	Cross-Tabulation	
UNIT-5	Data Visualization: A Brief matplotlib API Primer, Plotting Functions in	12
	pandas, Time Series, Financial and Economic Data Applications	
	Total	60

Text Books:

- 1. "Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter", (3rd Edition) by Wes McKinney.- 2022
- 2. LearningPython,5thEdition, MarkLutz,OReilly,2013.
- 3. ProgrammingPython,4thEdition, MarkLutz,OReilly,2010.
- 4. PythonForDataAnalysis,2ndEdition, WesMckinney,OReilly,2017.

Reference Books:

- 1. Python: The Complete Reference, 1stEdition, Martin C.Brown, McGraw Hill Education, 2018.
- 2. HeadFirstPython,2ndEdition,PaulBarry,O'Reilly,2016.

Web Resources:

- 1. https://www.youtube.com/watch?v= Fd2U1wPUSk
- 2. https://www.geeksforgeeks.org/dbms/data-preprocessing-in-data-mining/
- 3. https://wesmckinney.com/book/accessing-data

I Semester	ARTIFICIAL INTELLIGENCE	L	T	P	C
		3	1	0	4

Course Objectives: From the course the student will learn

- ➤ Gain a historical perspective of Artificial Intelligence (AI) and its foundations.
- ➤ Become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- ➤ Investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- Experience AI development tools such as an 'AI language', expert system shell, and/or data mining tool. Experiment with a machine learning model for simulation and analysis.
- Explore the current scope, potential, limitations, and implications of intelligent systems.

Course Out comes: At the end of the course, student will be able to (Four to Six)

		Knowledge			
		Level(K)#			
CO1	Analyze and formalize the problem as a state space, graph, design heuristics	K2			
	And select amongst different search or game-based techniques to solve them				
CO2	Analyze and apply problem reduction techniques and game playing and	K4			
	Adversarial search strategies in AI.				
CO3	Develop intelligent algorithms for constraints at is faction problems and also	К3			
	Design intelligent systems for Game Playing.				
	Apply probabilistic and evidential reasoning techniques to handle	K5			
CO4	Uncertainty in intelligent systems.				
CO5	Understand the fundamental concepts of fuzzy sets and fuzzy logic.	K6			

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	-	Н	M	-	M
CO2	Н	ı	Н	Н	-	Н
CO3	Н	-	Н	Н	M	Н
CO4	Н	-	Н	Н	-	Н
CO5	Н	-	Н	Н	-	Н
CO6	-	-	-	-	-	-

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Introduction to artificial intelligence: Introduction, history, intelligent	12
	systems, foundations of AI, applications, tic-tac-tie game playing,	
	development of AI languages, current trends in AI, Problem solving:	
	state-space search and control strategies: Introduction, general problem	
	solving, characteristics of problem, exhaustive searches, heuristic search	
	techniques, iterative- deepening a*, constraints at is faction	
UNIT-2	Problem reduction and game playing: Introduction, problem reduction,	12
	game playing, alpha-beta pruning, two-player perfect information games,	
	Logic concepts: Introduction, propositional calculus, proportional logic,	
	natural deduction system, axiomatic system, semantic tableau system in	
	proportional logic, resolution refutation in proportional logic, predicate	
	Logic	
UNIT-3	Knowledge representation: Introduction, approaches to knowledge	12
	representation, knowledge representation using semantic network,	
	extended semantic networks for KR, knowledge representation using	
	frames, advanced knowledge representation techniques: Introduction,	
	conceptual dependency theory, script structure, Cyc theory, case	
	grammars,	
	Semantic web.	
UNIT-4	Uncertainty measure: probability theory: Introduction, probability	12
	theory, Bayesian belief networks, certainty factor theory, dempster-shafer	
	Theory	
UNIT-5	Fuzzy sets and fuzzy logic: Introduction, fuzzy sets, fuzzy set operations,	12
	types of membership functions, multi valued logic, fuzzy logic, linguistic	
	variables and hedges, fuzzy propositions, inference rules for fuzzy	
	propositions, fuzzy systems.	
	Total	60

Text Books:

- 1. Artificial intelligence A modern Approach, 2nded, Stuart Russel, Peter Norvig, Prentice Hall
- 2. "Artificial Intelligence: A Modern Approach (4th Edition)", Stuart Russell & Peter Norvig-2020
- 3. Artificial Intelligence, Saroj Kaushik, 1stEdition, CENGAGE Learning, 2011.

Reference Books:

- 1. "Fuzzy Logic with Engineering Applications (4th Edition)", Timothy J. Ross, Wiley-2016
- 2. Artificial intelligence, structures and Strategies for Complex problem solving, 5th Edition, George F Lugar, PEA
- 3. Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer, 2017
- 4. Artificial Intelligence, A new Synthesis, 1stEdition, Nils J Nilsson, Elsevier, 1998
- 5. Artificial Intelligence -3rd Edition, Rich, Kevin Knight, Shiv Shankar B Nair, TMH
- 6. Introduction To Artificial Intelligence and Expert Systems, 1stEdition, Patterson, Pearson India, 2015

Web Resources:

- 1. https://www.geeksforgeeks.org/artificial-intelligence/alpha-beta-pruning-in-adversarial-search-algorithms/
- 2. https://www.youtube.com/watch?v=gzOaucyZDRM

I Semester	ADVANCED DATA STRUCTURES AND ALGORITHMS	L	T	P	C
	ALGORITHMS	3	1	0	4

Course Objectives: From the course the student will learn

- > Concepts of Algorithms, Searching and Sorting techniques, Trees, Binary trees,
- > representation, traversal.
- Dictionaries, ADT for List, Stack, Queue, Hash table representation, Hash functions,
- > Priority queues, Priority queues using heaps, Search trees.
- > AVL trees, operations of AVL trees, Red-Black trees, Splay trees, comparison of search trees.

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level(K)#
CO1	Understand, design, and analyze algorithms for efficient problem-solving in	K4
	computing.	
CO2	Understand and apply fundamental algorithms and data structures, including	К3
	searching, sorting, trees, and graphs, to organize and process data efficiently.	
CO3	Understand and apply Abstract Data Types (ADTs) and hashing techniques	K2
	For efficient data storage and retrieval	
CO4	Design and implement variety of data structures including linked lists,	K6
	Binary trees, heaps, graphs and search trees	
CO5	Compare various search trees (AVL, Red- Black, Splay, B- Trees) based on	K4
	Performance and applications.	

Mapping of course out comes with program out comes

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	-	Н	Н	-	Н
CO2	M	-	Н	M	-	Н
CO3	M	-	Н	M	M	Н
CO4	Н	-	Н	M	Н	Н
CO5	M	-	Н	M	M	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	The Role of Algorithms in Computing, Algorithms, Algorithms as	12
	technology, analyzing algorithms, Designing algorithms,	

	Growth of Functions, Asymptotic notation, Standard notations and					
	Common functions					
UNIT-2	Searching-Linear and Binary, Search Methods, Sorting-Bubble Sort,	12				
	Selection Sort, Insertion sort, Quick Sort, Merge Sort. Trees- Binary trees,					
	Properties, Representation and Traversals (DFT, BFT), Expression Trees					
	(Infix, prefix, postfix). Graphs-Basic Concepts, Storage structures and					
	Traversals.					
UNIT-3	Dictionaries, ADT, The List ADT, Stack ADT, Queue ADT, Hash Table	12				
	Representation, Hash Functions, Collision Resolution- Separate Chaining,					
	Open Addressing-Linear Probing, Double Hashing.					
UNIT-4	Priority queues- Definition, ADT, realizing a Priority Queue Using Heaps,	12				
	Definition, Insertion, Deletion, Search Trees- Binary Search Trees,					
	Definition, ADT, Implementation, Operations Searching, Insertion,					
	Deletion.					
UNIT-5	Search Trees- AVL Trees, Definition, Height of AVL Tree, Operations-,	12				
	Insertion, Deletion and Searching, Introduction to Red-Black and Splay					
	Trees, B-Trees, Height of B-Tree, Insertion, Deletion and Searching,					
	Comparison of Search Trees.					
	Total	60				

Text Books:

- 1. "Introduction to Algorithms and Data Structures", Micahelle Perez, Publisher Cengage Learning -2023
- "Algorithms, 4th Edition", Robert Sedgewick and Kevin Wayne, Publisher: Addison-Wesley-2023
- 3. IntroductiontoAlgorithms,3rd Edition, Thomas HCormen, Charles E.Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press.
- 4. Data Structures: A Pseudo Code Approach, 2nd Edition, Richard F.Gilberg, BehrouzA. Forouzon and Cengage

Reference Books:

1. "A Textbook of Data Structures and Algorithms, Volume 3", G. A. Vijayalakshmi Pai, Publisher: Wiley-ISTE -2023

Web Resources:

1. https://www.youtube.com/watch?v=BOKMKWqanPo

I Semester	ADVANCED DATA MINING	L	T	P	C	
		3	0	0	3	1

Course Objectives: From the course the student will learn

- > Explain the statistical limits of data mining and the role of predictive analytics.
- Analyze compact representations of frequent item sets to reduce computational complexity.
- > Evaluate and compare advanced association mining techniques for accuracy and efficiency.
- > Understand the importance and objectives of cluster analysis in data mining.
- > Apply data mining methods to create comprehensive, accurate predictive models.

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level(K)#
CO1	Understand and compare major datamining methodologies such as CRISP-	K2
	DM and SEMMA	
CO2	Performcovarianceandcorrelationanalysisinthecontextofassociation	K1
	mining.	
CO3	Make use of association rule mining techniques on categorical and	K6
	Continuous data.	
CO4	Identify and apply clustering algorithm (with open-source tools), interpret,	K3
	Evaluate and report the result.	
CO5	Evaluate clustering algorithms based on cluster characteristics, data	K4
	properties, and cluster quality metrics.	

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	Н	M	Н
CO2	M	M	Н	M	M	Н
CO3	M	-	Н	M	L	M
CO4	Н	Н	Н	M	M	Н
CO5	Н	M	Н	Н	M	Н

UNIT	CONTENTS	Contact			
		Hours			
UNIT-1	Data Mining Methodologies: CRISP-DM and SEMMA, Comparison of	12			
	Data Mining Methodologies. Statistical Limits on Data Mining,				
	Introduction to Predictive Analytics, Classification & Prediction:				
	Predictive Modelling; Concepts, General Approach to solving a				
	classification problem, - ZeroR, One R, Decision Tree Induction: Attribute				
	Selection Measures, Tree Pruning, Scalability and Decision Tree				
	Induction, Bayesian Classification Methods: Bayes Theorem, Naïve Bayes				
	Classification, Model Evaluation and Selection, Visualization techniques				
	And experiments with weka.				
UNIT-2	Association Analysis: Problem Definition, Frequent Itemset Generation, Rule Generation: Confident Based Pruning, Rule Generation in Apriori	12			
	Algorithm, Compact Representation of frequent item sets, FP-Growth				
	Algorithm, Generating item sets and rules efficiently, Covariance and				
	Correlation analysis.				
	•				
UNIT-3	Advanced Concepts on Association Analysis: Handling Categorical and	12			
	Continuous Attributes, handling a Concept Hierarchy, Sequential Patterns:				
	Preliminaries, Sequential Pattern Discovery, Timing Constraints,				
	Alternative Counting Schemes; Subgraph Patterns: Preliminaries: Frequent				
	Subgraph Mining, Candidate Generation, Candidate Pruning, Support				
	Counting (Tan & Vipin Kumar)				
UNIT-4	Clustering: Importance of Cluster Analysis, Clustering techniques,	12			
	Different Types of Clusters; K-means: The Basic K-means Algorithm, K-				
	means Additional Issues, Agglomerative Hierarchical Clustering: Basic				
	Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional				
	Density Center- Based Approach, DBSCAN Algorithm, Strengths and				
TIMES -	Weaknesses. (Tan & Vipin Kumar)	10			
UNIT-5	Cluster Analysis: Additional Issues and Algorithms: Cluster Evaluation,	12			
	Characteristics of Data, Clusters, and Clustering Algorithms. (Tan & Vipin				
	Kumar) Mining rich data types: Mining text data, Spatial-temporal data,				
	Graph and networks (Han 4th ed)				
	Mining real data: Preprocessing data from are all medical domain, data				
	Mining techniques to create a comprehensive and accurate model of data.	60			
	Total	60			

Text Books:

- 1. Data Mining: Concepts and Techniques (4th Edition) by Jiawei Han, Jian Pei, and Hanghang Tong 2022
- 2. **Data Mining and Predictive Analytics (2nd Edition)** by Daniel T. Larose and Chantal D. Larose, 2022
- 3. Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, 2nd edition
- 4. Data Mining: Concepts and Techniques, J. Han and M. Kamber, Morgan Kaufmann C.J. Date, Database Systems, Pearson, 4th edition

Reference Books:

- 1. **Data Mining Methods** by Rajan Chattamvelli, *Published: 2016*
- 2. Fundamentals of Data Warehouses, 2nd edition, Jarke, Lenzerini, Vassiliou, Vassiliadis, Springer.

Web Resources:

- https://www.geeksforgeeks.org/data-analysis/difference-between-classification-and-prediction-methods-in-data-mining/
- https://www.youtube.com/watch?v=s5ZR83dd5-k

Suggested NPTEL Course:

https://nptel.ac.in/courses/106105174/

I Semester	MINING MASSIVE DATA SETS	L	T	P	C
		3	0	0	3

Course Objectives:

Help students learn basic concepts and techniques for handling and analyzing large datasets, including data mining, distributed computing, data stream Tos, frequent patterns, clustering, and dimensionality reduction, to solve practical problems.

- ➤ Understand the fundamental concepts and significance of data mining in knowledge discovery.
- Explain the MapReduce programming model and its role in parallel data processing
- > Apply MapReduce algorithms to solve large-scale data mining and analytics problems.
- > Analyze performance issues and optimizations in MapReduce-based data processing.
- ➤ Evaluate modern extensions to MapReduce such as Apache Spark, Hive, and Pig for enhanced scalability.

Course Outcomes:

		Knowledge
		Level(K)#
CO1	Understand the fundamentals of datamining, statistical modeling, and	K2
	Feature extraction for analyzing large datasets.	
CO2	Apply the Map Reduce frame work and distributed file systems for efficient	К3
	Processing of massive data.	
CO3	Analyze data streams using techniques like sampling, filtering, and counting	K4
	Distinct elements in real-time scenarios.	
CO4	Usefrequentitemsetminingalgorithmstoidentifypatternsinlargedatasets	K3
	And optimize their computation	
CO5	Evaluate clustering techniques and dimensionality reduction methods to	K5
	Group data and reduce complexity in high-dimensional datasets.	

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	Н	M	Н
CO2	Н	M	Н	Н	M	Н
CO3	M	L	Н	Н	L	Н
CO4	Н	M	Н	M	L	Н
CO5	Н	M	Н	M	M	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Data Mining: Introduction, Statistical Modeling, Machine Learning,	12
	Computational Approaches to Modeling, Feature Extraction, Statistical	
	Limits on Data Mining, Hash Functions, Indexes, Natural Logarithms,	
	Power Laws.	
UNIT-2	Map Reduce and the New Software Stack: Distributed File Systems, Map	12
	Reduce, Algorithms Using Map Reduce, Extensions to MapReduce, Complexity Theory for MapReduce	
TINITE A		10
UNIT-3	Mining Data Streams: The Stream Data Model, Sampling Data in a	12
	Stream, Filtering Streams, Counting Distinct Elements in a Stream,	
	Counting Ones in a Window, Decaying Windows.	
UNIT-4	Frequent Item sets: The Market-Basket Model, Market Baskets and the A-Priori Algorithm, Handling Larger Data sets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.	12
UNIT-5	Clustering: Introduction to Clustering Techniques, Hierarchical	12
	Clustering, K-means Algorithms, The CURE Algorithm, Clustering in	
	Non-Euclidean Spaces, and Clustering for Streams and Parallelism.	
	Dimensionality Reduction: Eigen values and Eigenvectors of Symmetric	
	Matrices, Principal-Component, Analysis, Singular-Value, Decomposition,	
	CURD decomposition.	
	Total	60

Text Books:

- 1. "Data Mining: Concepts and Techniques (4th Edition)", Jiawei Han, Jian Pei, Hanghang Tong, Publisher: Elsevier-2022
- 2. "Mining of Massive Datasets (3rd Edition)", Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Publisher: Cambridge University Press-2022
- 3. Mining of Massive Datasets-Jure Leskovec, Anand Rajaraman, Jeffrey D.Ullman.

Reference Books:

- 1. "Data Mining Methods by Rajan Chattamvelli", Published: 2016
- **2.** Fundamentals of Data Warehouses, 2nd edition, Jarke, Lenzerini, Vassiliou, Vassiliadis, Springer.

Web Resources:

- 1. https://www.youtube.com/watch?v=ZUJ0UT9j2lQ
- 2. https://www.youtube.com/watch?v=43CMKRHdH30
- 3. https://www.geeksforgeeks.org/c-sharp/map-reduce-in-hadoop/

I Semester	HIGH PERFORMANCE COMPUTING	L	Т	P	C
		3	0	0	3

Course Objectives:

The main objectives of the course are to study parallel computing hardware and programming models, performance analysis and modeling of parallel programs.

- ➤ Identify and understand various sources of overhead in parallel programs.
- > Apply performance metrics to evaluate the scalability and efficiency of parallel systems.
- Analyze the impact of granularity and cost models on overall program performance.
- > Implement analytical models for achieving optimal execution time in parallel systems.
- ➤ Apply dense matrix algorithms such as matrix-vector and matrix-matrix multiplication in parallel environments.

Course Outcomes:

		Knowledge
		Level(K)#
CO1	Understand the need for parallelism and the scope of parallel computing.	K2
	Explain various parallel programming platforms, architectures, and their	
	limitations.	
CO2	Developanefficientparallelalgorithmtosolvegivenproblemanalyzeand	К3
	Measure performance of modern parallel computing system	
CO3	Understand fundamental communication operations in parallel computing	K2
	and their performance implications. Explain the basics of shared address	
	Space programming using threads, synchronization, and Open MP.	
CO4	Evaluate performance metrics, overheads, and scalability factors in parallel	K5
	Systems using analytical models	
CO5	Build the logic to parallelize the programming task Develop parallel	K6
	algorithms for sorting, graph problems, and CUDA-based GPU	
	Programming to address computational challenges in modern systems.	

Mapping of course out comes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	Н	L	M
CO2	Н	M	Н	Н	M	Н
CO3	M	L	M	M	L	M
CO4	M	L	M	M	L	M
CO5	Н	M	Н	Н	M	Н

UNIT	CONTENTS			
		Hours		
UNIT-1	Introduction: Motivating Parallelism, Scope of ParallelComputing, Parallel Programming Platforms: Implicit Parallelism, Trends in Microprocessor and Architectures, Limitations of Memory, System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines, Scalable design principles, Architectures: N-wide superscalar architectures, multi-core architecture.	12		
UNIT-2	Parallel Programming: Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models, The Age of Parallel Processing, the Rise of GPU Computing, A Brief History of GPUs, Early GPU.	12		
UNIT-3	Basic Communication: Operations- One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix- Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations. Programming shared address space platforms: threads-basics, synchronization, Open MP programming.	12		
UNIT-4	Analytical Models: Sources of overhead in Parallel Programs, Performance Metrics for Parallel Systems, and the effect of Granularity on Performance, Scalability of Parallel Systems, Minimum execution time and minimum cost, optimal execution time. Dense Matrix Algorithms: Matrix Vector Multiplication, Matrix-Matrix Multiplication.	12		
UNIT-5	Parallel Algorithms: Sorting and Graph: Issues in Sorting on Parallel Computers, Bubble Sort and its Variants, Parallelizing Quick sort, All-Pairs Shortest Paths, Algorithm for sparse graph, Parallel Depth-First Search, Parallel Best First Search. CUDA Architecture: CUDA Architecture, Using the CUDA Architecture, Applications of CUDA Introduction to CUDA C-Write and launch CUDA C kernels, Manage GPU memory, Manage communication and synchronization, Parallel Programming in CUDA-C.	12		
	Total	60		

Text Books:

- 1. "Introduction to Parallel Computing", S. Kumar, Publisher: Cambridge University Press-2023
- **2.** Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, "Introduction to Parallel Computing", 2nd edition, Addison-Wesley, 2003, ISBN: 0-201-64865-2.
- 3. Jasonsanders, Edward Kandrot, "CUDA by Example", Addison-Wesley, ISBN-13: 978-0-13-138768-3.

Reference Books:

- 1. "Programming in Parallel with CUDA: A Practical Guide", Richard E. Ansorge, **Publisher**: Cambridge University Press-2022
- 2. KaiHwang, "ScalableParallelComputing", McGrawHill 1998, ISBN:0070317984.
- 3. Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs", Morgan Kaufmann Publishers Inc. San Francisco, CA, USA2013 ISBN: 9780124159884.
- 4. David Culler Jaswinder Pal Singh," Parallel Computer Architecture: A Hardware/Software Approach", Morgan Kaufmann, 1999, ISBN 978-1-55860-343-1.
- 5. RodStephens, "Essential Algorithms", Wiley, ISBN: ISBN: 978-1-118-61210-1.

Web Resources:

- 1. https://www.geeksforgeeks.org/mobile-computing/parallel-algorithm-models-in-parallel-computing/
- 2. https://www.youtube.com/watch?v=m1b74x18kZk&list=PLhbrpS8rYbc0RD5cCF-IDtwzuRhBGEHl0

I Semester	AUGMENTED REALITY AND VIRTUAL		T	P	C
	REALITY	3	0	0	3

Course Objectives: To acquire the knowledge on augmented reality.

- > To demonstrate the augmented reality devices.
- > To acquire the knowledge on virtual reality.
- > To illustrate the VR devices.
- > To explain how to apply VR/AR for various applications.
- Evaluate the impact of AR applications on learning, visualization, and productivity.

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level(K)#
CO1	Explain the origin and fundamental concepts of Augmented Reality. Explain the working of Augmented Reality and identify its key ingredients	K1
CO2	Understand the relationship between Augmented Reality and other related technologies	K2
CO3	Understand the fundamental concepts, historical development, and key components of virtual reality systems and input interfaces.	K2
CO4	Apply knowledge of VR output devices and human factors to analyze user interaction, performance, and safety in virtual environments.	К3
CO5	Apply augmented and virtual reality concepts to identify, design, and Evaluate applications in domains like manufacturing and robotics.	К3

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L	M	M	L	L	M
CO2	M	L	M	M	M	M
CO3	L	M	M	L	L	M
CO4	M	L	Н	M	M	M
CO5	M	M	Н	Н	Н	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Augmented Reality, origin of Augmented Reality, The Relationship Between Augmented Reality and Other Technologies, Augmented Reality	12

	Concepts, working of Augmented Reality, Ingredients of an Augmented	
	Reality Experience.	
UNIT-2	Augmented Reality Hardware, Major Hardware Components for Augmented Reality Systems, Augmented Reality Software, Major Software Components for Augmented Reality Systems, Software used to Create Content for the Augmented Reality Application.	12
UNIT-3	Virtual Reality: The Three I's of Virtual Reality, A Short History of Early Virtual Reality, Early Commercial VR Technology, VR Becomes an Industry, The Five Classic Components of a VR System. Input Devices: Trackers, Navigation, and Gesture Interfaces: Three-Dimensional Position Trackers, Navigation and Manipulation Interfaces.	12
UNIT-4	Output Devices: Graphics, Three-Dimensional Sound, and Haptic Displays: Graphics Displays, Sound Displays, Haptic Feedback. Human Factors in VR: Methodology and Terminology, User Performance Studies, VR Health and Safety Issues, VR and Society.	12
UNIT-5	Augmented Reality Applications, characteristics of a Good Augmented Reality Application, Application Areas, Magic Books, Magic Windows and Doors, Applying Augmented Reality to a Problem, Evaluating Augmented Reality Applications, VR Applications in Manufacturing, Applications of VR in Robotics.	12
	Total	60

Text Books:

- 1. "Handbook of Augmented and Virtual Reality", Sumit Badotra, Sarvesh Tanwar, Ajay Rana, Nidhi Sindhwani, Ramani Kannan, **Publisher**: De Gruyter,-2023
- 2. "Everyday Virtual and Augmented Reality", Giuseppe Riva, Brenda K. Wiederhold, Pietro Cipresso, **Publisher**: Springer-2023
- 3. AlanB.Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.
- 4. Burdea,G.C.and P.Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.

Reference Books:

- 1. "Virtual Reality", Steven M. LaValle, Publisher: Cambridge University Press-2023
- 2. LaValle, "VirtualReality", CambridgeUniversityPress,2016.
- 3. Alan B Craig, William R Shermanand Jeffrey D Will, "Developing Virtual Reality Applications: Foundations of Effective Design", Morgan Kaufmann, 2009.
- 4. JohnVince, "VirtualRealitySystems", PearsonEducationAsia,2007.
- 5. Anand R., "Augmented and VirtualReality", Khanna Publishing House, Delhi.

Web Resources:

- 1. https://www.geeksforgeeks.org/blogs/basics-augmented-reality/
- 2. https://www.interaction-design.org/literature/topics/augmented reality?srsltid=AfmBOopSV7ApIAvRlB8xVVTHIbYYEbdQn_LdV5m6hT1JC9JHUAH grbiY
- 3. https://www.geeksforgeeks.org/computer-graphics/architecture-of-augmented-reality-and-its-components/
- 4. https://www.youtube.com/watch?v=04AMaTsXFJU

I Semester	RECOMMENDER SYSTEMS	L	T	P	C
		3	0	0	3

Course Objectives:

This course covers the basic concepts of recommender systems, including personalization algorithms, evaluation tools, and user experiences.

- > To identify **applications and challenges** associated with building and deploying recommender systems.
- > To implement **nearest neighbor** techniques for user-item similarity measurement
- ➤ To analyze **case-based recommenders** and evaluate their effectiveness in domains requiring contextual knowledge.
- > To evaluate the **advantages and limitations** of different hybrid recommender system designs.
- > To understand the **importance and methods** of evaluating recommender systems.

Course Outcomes:

		Knowledge
		Level(K)#
CO1	Understand the fundamentals, mathematical notations, and applications of	K2
	Recommender systems along with associated challenges.	
CO2	Evaluate different collaborative filtering approaches and assess the impact	K5
	Of attacks on recommender systems to improve their robust ness and	
	performance.	
CO3	Develop content-based and knowledge-based recommendation models	К3
	Using it profiles, feature extraction, and classification algorithms.	
CO4	Design and implement hybrid recommender systems by exploring various	K6
	Hybridization strategies.	
CO5	Evaluate recommender systems, and explore the integration of social	K5
	tagging, trust, and community- driven recommendations for personalized	
	Web search.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L	M	M	L	L	M
CO2	M	M	Н	M	M	M
CO3	Н	M	Н	Н	M	Н
CO4	Н	M	Н	Н	Н	Н
CO5	Н	Н	Н	M	Н	Н

UNIT-1 Introduction: Recommender system functions, Linear Algebra notation: Matrix addition, Multiplication, transposition, and inverses, covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system. UNIT-2 Collaborative Filtering: User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing-based approaches, Attacks on collaborative recommender systems. UNIT-3 Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based recommenders. UNIT-4 Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search, social tagging Recommender systems, Trust and recommendations.	UNIT	CONTENTS	Contact
notation: Matrix addition, Multiplication, transposition, and inverses, covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system. UNIT-2 Collaborative Filtering: User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing-based approaches, Attacks on collaborative recommender systems. UNIT-3 Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based recommenders. UNIT-4 Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,			Hours
Issues with recommender system. UNIT-2 Collaborative Filtering: User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing-based approaches, Attacks on collaborative recommender systems. UNIT-3 Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based recommenders. UNIT-4 Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,	UNIT-1	notation: Matrix addition, Multiplication, transposition, and inverses, covariance matrices, Understanding ratings, Applications of	12
UNIT-2 Collaborative Filtering: User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing-based approaches, Attacks on collaborative recommender systems. UNIT-3 Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based recommenders. UNIT-4 Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,		· · · · · · · · · · · · · · · · · · ·	
based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based recommenders. UNIT-4 Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,	UNIT-2	Collaborative Filtering: User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing-based approaches, Attacks on collaborative recommender	12
hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. UNIT-5 Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,	UNIT-3	Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content-based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint Based recommenders, Case based	12
evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search,	UNIT-4	hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization	12
Total 60	UNIT-5	evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centered metrics. Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search, social tagging Recommender systems, Trust and recommendations.	

Text Books:

- 1. "Recommender Systems: The Textbook", Charu C. Aggarwal, Publisher: Springer-2016
- 2. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press (2011), 1st ed.
- 3. RicciF., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer (2011), 1st ed.

Reference Books:

- 1. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems for Learning, Springer (2013), 1st ed.
- 2. "Recommender Systems: An Introduction", Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich, **Publisher**: Cambridge University Press-2010

Web Resources:

- 1. https://www.geeksforgeeks.org/machine-learning/user-based-collaborative-filtering/
- 2. https://www.geeksforgeeks.org/machine-learning/what-are-recommender-systems/
- 3. https://www.youtube.com/watch?v=t4oDiPFyuK4

I Semester	TIME CEDIEC ANALYCIC	L	T	P	C
	TIME SERIES ANALYSIS	3	0	0	3

Course Objectives:

The main objective of the course is to introduce a variety of statistical models for time series and cover the main methods for analyzing these models.

- > Understand the fundamental concepts of time series and forecasting
- > Explain the general approach to developing and validating time series forecasting models.
- ➤ Understand the concept of linear regression and its application in time series forecasting.
- Analyze time series data for stationarity and apply transformations to achieve stationary conditions.
- Analyze multivariate stationary processes and assess their stability and dependencies.

Course Outcomes:

		Knowledge
		Level(K)#
CO1	Develop and design forecasting models using time series data by analyzing	K6
	its structure, auto correlation patterns, and applying appropriate techniques	
	For accurate predictions.	
CO2	Use statistical software to estimate the models from real data, and draw	K6
	Conclusions and develop solutions from the estimated models.	
CO3	Evaluate and apply advanced regression techniques and time series models	K5
	To analyze data, make predictions, and assess model adequacy.	
CO4	Communicate the statistical analyses of substantial data sets through	К3
	explanatory text, tables and graphs. Apply ARIMA and Seasonal ARIMA	
	models to analyze time series data, assess stationarity.	
CO5	Combine and adapt different statistical models to analyze large random re	K6
	Complex data.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	Н	M	Н	Н	M	Н
CO3	Н	L	M	M	L	M
CO4	M	Н	M	L	L	M
CO5	Н	M	Н	Н	M	Н

		Contact
		Hours
UNIT-1	Introduction of Timeseries Analysis: Introduction to Time Series and Forecasting, Different types of data, Internal structures of timeseries. Models for time series analysis, Autocorrelation and Partial Auto correlation. Examples of Time series Nature and uses of forecasting, Forecasting Process, Data for forecasting, Resources for forecasting	12
UNIT-2	Statistics Background for Forecasting: Graphical Displays, Time Series Plots, Plotting Smoothed Data, Numerical Description of Time Series Data, Use of Data Transformations and Adjustments, General Approach to Time Series Modeling and Forecasting, Evaluating and Monitoring Forecasting Model Performance.	12
UNIT-3	Time Series Regression Model: Introduction Least Squares Estimation in Linear Regression Models, Statistical Inference in Linear Regression, Prediction of New Observations, Model Adequacy Checking, Variable Selection Methods in Regression, Generalized and Weighted Least Squares, Regression Models for General Time Series Data, Exponential Smoothing, First order and Second order	12
UNIT-4	Autoregressive Integrated Moving Average (ARIMA)Models: Auto regressive Moving Average (ARMA)Models, Stationarity and Invertibility of ARMA Models, Checking for Stationarity using Variogram, Detecting Non stationarity, Autoregressive Integrated Moving Average (ARIMA) Models, Forecasting using ARIMA, Seasonal Data, Seasonal ARIMA Models Fore casting using Seasonal ARIMA Models Introduction, Finding the "BEST" Model. Example: Internet Users Data Model Selection Criteria, Impulse Response Function to Study the Differences in Models Comparing Impulse Response Functions for Competing Models.	12
UNIT-5	Multivariate Time Series Models and Forecasting: Multivariate Time Series Models and Forecasting, Multivariate Stationary Process, Vector ARIMA Models, Vector AR(VAR)Models, Neural Networks and Forecasting Spectral Analysis, Bayesian Methods in Forecasting. Total	60

Text Books:

- 1. "Forecasting: Principles and Practice (3rd Edition)", Rob J Hyndman & George Athanasopoulos, **Publisher**: OTexts-2023
- 2. IntroductionToTimeSeriesAnalysisandForecasting,2nd Edition, Wiley Series in Probability and Statistics, By Douglas C. Montgomery, Cheryl L. Jen (2015).
- 3. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pallor. Pks Prakash (2017)

Reference Books:

- "Modern Time Series Forecasting with Python", Manu Joseph, Publisher: Packt Publishing
 2022
- 2. "Applied Time Series Modelling and Forecasting", Richard Harris & Robert Sollis, **Publisher**: John Wiley & Sons-2003

Web Resources:

- 1. https://www.geeksforgeeks.org/machine-learning/time-series-analysis-and-forecasting/
- 2. https://otexts.com/fpp2/graphics.html
- 3. https://www.youtube.com/shorts/i5zu-O1 5sw
- 4. https://www.youtube.com/watch?v=ZoJ2OctrFLA&list=PLvcbYUQ5t0UHOLnBzl46_Q6QKtF gfMGc3

I Semester	ARTIFICIAL INTELLIGENCE LAB	L	T	P	C
		0	1	2	2

Course Objective:

The objective of this lab is to equip students with hands-on experience in implementing fundamental and advanced artificial intelligence algorithms using Python. Students will learn to solve real-world problems using search strategies, heuristic techniques, game-playing algorithms, optimization methods, and expert systems, fostering their ability to design intelligent systems for various applications.

- To understand the fundamental concepts, functions, and applications of recommender systems along with the mathematical foundations such as linear algebra and covariance matrices.
- > To learn various recommendation techniques including collaborative filtering, content-based filtering, and knowledge-based approaches, and understand their advantages and limitations.
- ➤ To explore different hybrid recommendation strategies that combine multiple methods to improve accuracy and overcome individual system weaknesses.
- > To develop the ability to analyze and evaluate recommender systems using appropriate evaluation metrics, datasets, and user-centered approaches.
- ➤ To examine the role of recommender systems in social and community contexts, emphasizing trust, collaboration, and personalization in modern web applications.

Course Outcomes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Implement and analyze classic AI search techniques, such as DFS and	K3
	BFS, for solving structured problems using Python.	
CO2	Apply heuristic-based approaches, including TSP and simulated	K3
	annealing, to optimize complex problem - solving scenarios.	
CO3	Develop and implement advanced AI algorithms like A*, AO*, and hill-	K4
	Climbing to address puzzles and decision-making tasks effectively.	
CO4	Design game-playing strategies using Min-Max algorithms and evaluate	K4
	Their performance in adversarial settings.	
CO5	Build and test expert systems utilizing forward and back ward chaining	K3
	Methods to automate reasoning processes in Python.	

#BasedonsuggestedRevisedBTL

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	Н	M	L
CO2	Н	M	Н	Н	M	L
CO3	Н	M	Н	Н	Н	M
CO4	Н	M	Н	Н	Н	M
CO5	Н	M	Н	Н	Н	M
CO6	Н	M	Н	Н	Н	M

(Please fill the above with Levels of Correlation, viz., L, M, H)

Experiment No.	List of Experiments
1	Implementation of DFS for water jug problem using PYTHON.
2	Implementation of BFS for water jug problem using PYTHON.
3	Implementation of BFS for tic-tac-toe problem using PYTHON.
4	Implementation of TSP using heuristic approach using PYTHON.
5	Implementation of Hill-climbing to solve 8-Puzzle Problem using PYTHON.
6	Implementation of Monkey Banana Problem using PYTHON.
7	Implementation of A* Algorithm using PYTHON.
8	Implementation of AO* Algorithm using PYTHON.
9	Implementation of Min-Max Game playing algorithm using PYTHON.
10	Implementation Expert System with forward chaining using PYTHON.
11	Implementation Expert System with back ward chaining using PYTHON.

Text Books:

- 1. "Artificial Intelligence: Foundations of Computational Agents (3rd Edition)", David L. Poole & Alan K. Mackworth, **Publisher**: Cambridge University Press-2023
- 2. Artificial intelligence, A modern Approach, 2nded, Stuart Russel, Peter Norvig, Prentice Hall
- 3. Artificial Intelligence, Saroj Kaushik, 1st Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. "Artificial Intelligence: A Modern Approach (4th Edition)", Stuart Russell & Peter Norvig, **Publisher**: Pearson-2020
- 2. Artificial intelligence, structuresandStrategiesforComplexproblemsolving,5th Edition, George F Lugar, PEA.
- 3. Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer, 2017.
- 4. Artificial Intelligence, AnewSynthesis, 1st Edition, Nils J Nilsson, Elsevier, 1998.
- 5. ArtificialIntelligence-3rdEdition, Rich, Kevin Knight, Shiv Shankar B Nair, TMH.
- 6. IntroductionToArtificialIntelligenceandExpertSystems,1stEdition, Patterson, Pearson India, 2015.

Web Resources:

- 1. https://www.youtube.com/watch?v=tHFH2NkYI8Y
- 2. https://www.geeksforgeeks.org/artificial-intelligence/water-jug-problem-in-ai/
- 3. https://www.youtube.com/watch?v=9bjsOhSlwVM

I Semester	DATA WRANGLING LAB	L	T	P	C
		0	1	2	2

Course Objectives:

To equip students with practical skills in data handling, analysis, and visualization using Python, including file operations, data cleaning, and advanced techniques like web scraping and database integration.

- ➤ Understand and process various data formats (CSV, JSON, XML, Excel, PDF) using Python libraries.
- > Perform data cleaning and wrangling operations using Pandas.
- > Store and retrieve structured data using SQLite databases in Python.
- Analyze and visualize data using Agate, Matplotlib, and Pygal.
- ➤ Apply end-to-end data processing techniques to real-world datasets like child labour and child marriage data.

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level(K)#
CO1	Perform Read and write operations on CSV, JSON and XML files.	K3
CO2	Process the Excel file using Pandas.	K3
CO3	Parse and Extract the Tables using Python library.	K3
CO4	Apply the basis of Data cleanup operation on the given dataset.	K3
CO5	Explore the web scraping in Python.	K3

[#]BasedonsuggestedRevisedBTL

Mapping of course out comes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	Н	M	L
CO2	Н	M	Н	Н	M	L
CO3	Н	M	Н	Н	Н	M
CO4	Н	M	Н	Н	Н	M
CO5	Н	M	Н	Н	Н	M

(Please fill the above with Levels of Correlation, viz., L,M,H)

Experiment	List of Experiments
No	
1	Write a Python script to read each row from a given csv file and print a list of
	strings.
2	Write a Python program to read a given CSV file as a dictionary.
3	Write a Python program to convert Python dictionary object (sort by key) to
	JSON data. Print the object members with indent level 4.
4	Write the python script to Read the XML file.
5	Write a Pandas program to import excel data (child labour and child marriage
	data.xlsx) into a Pandas data frame and process the following.
6	Get the data types of the given excel data.
7	Display the last ten rows.
8	Insert a column in the sixth position of the said excel sheet and fill it with NaN
	values.
9	Develop the python script to parse the pdf files using pdf miner.
10	Extract the Table from the child labour and child marriage data.xlsx using
	Pdf ables library.
11	Write a Python data wrangling scripts to insert the data into SQLite database.
12	Develop the Python Shell Script to do the basic data clean upon child labour
	And child marriage data.xlsx.
13	Check duplicates and missing data.
14	Eliminate Mismatches.
15	Cleans line breaks, spaces, and special characters.
16	Import the data into 'agate' then explores the table using a gate methods and
	Perform statistical correlations.
17	Draw the chart between perceived corruption scores compared to the child
	Labour percentages using matplotlib.
18	Write the python script to Map the Child Labour Worldwide using pygal.

Text Books:

- 1. "Python Data Science 2024: Explore Data, Build Skills, and Drive Insights", Stephen Wilson, **Publisher**: Independently published -2024
- 2. Jacqueline Kazil & Katharine Jarmul,"Data Wrangling with Python", O'Reilly Media, Inc,2016.
- 3. Dr.Tirtha jyoti Sarkar, Shubha deep,"Data Wrangling with Python: Creating actionable data from raw sources", Packt Publishing Ltd, 2019.

Reference Books:

- 1. "Mastering Python for Data Science (2nd Edition)", Samir Madhavan, Publisher: Packt Publishing-2025
- 2. "Python Data Analytics: Data Analysis and Science Using Pandas, Matplotlib, and the Python Programming Language (3rd Edition)", Fabio Nelli, Publisher: Apress-2015

Web Resources:

- 1. https://www.geeksforgeeks.org/python/load-csv-data-into-list-and-dictionary-using-python/
- 2. https://www.geeksforgeeks.org/python/python-sqlite-insert-data/
- 3. https://www.youtube.com/watch?v=i49yJxB3J38

II Semester	MACHINE LEARNING	L	T	P	C
		3	1	0	4

Course Objectives: Machine Learning course will

- > Understand the concept of intelligent machines and well-posed problems.
- > Evaluate model performance using regression and classification metrics
- Apply descriptive statistical techniques to learning models.
- Apply perceptron and Widrow-Hoff (delta) rule for cognitive machine learning.
- Analyze the strengths and limitations of decision tree-based learning approaches.

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level(K)#
CO1	Domain Knowledge for Productive use of Machine Learning and Diversity of Data.	K4
CO2	Demonstrate on Supervised and Computational Learning.	K2
CO3	Analyze on Statistics in learning techniques and Logistic Regression	K4
CO4	Illustrate on Support Vector Machines and Perceptron Algorithm.	K2
CO5	Design a Multilayer Perceptron Networks and classification of decision	K6
	tree.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	Н	M	Н	Н	M	Н
CO3	Н	L	Н	Н	L	Н
CO4	M	L	Н	Н	L	Н
CO5	Н	M	Н	Н	L	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Introduction: Towards Intelligent Machines, well posed Problems,	12
	Example of Applications in diverse fields, Data Representation, Domain	
	Knowledge for Productive use of Machine Learning, Diversity of Data:	
	Structured/ Unstructured, Forms of Learning, Machine Learning and Data	
	Mining, Basic Linear Algebra in Machine Learning Techniques.	

TINITE A		12
UNIT-2	Supervised Learning: Rationale and Basics: Learning from Observations, Bias and Why Learning Works: Computational Learning Theory, Occam's	12
	Razor Principle and Overfitting Avoidance Heuristic Search in inductive	
	Learning, Estimating Generalization Errors, Metrics for assessing	
	regression, Metris for assessing classification.	
UNIT-3	Statistical Learning: Machine Learning and Inferential Statistical	12
	Analysis, Descriptive Statistics in learning techniques, Bayesian	
	Reasoning: A probabilistic approach to inference, K-Nearest Neighbor	
	Classifier. Discriminant functions and regression functions, Linear	
	Regression with Least Square Error Criterion, Logistic Regression for	
	Classification Tasks, Fisher's Linear Discriminant and Thresholding for	
	Classification, Minimum Description Length Principle.	
UNIT-4	Support Vector Machines (SVM): Introduction, Linear Discriminant	12
	Functions for Binary Classification, Perceptron Algorithm, Large Margin	
	Classifier for linearly separable data, Linear Soft Margin Classifier for	
	Overlapping Classes, Kernel Induced Feature Spaces, Nonlinear Classifier,	
	Regression by Support vector Machines. Learning with Neural	
	Networks: Towards Cognitive Machine, Neuron Models, Network	
	Architectures, Perceptron, Linear neuron and the Widrow-Hoff Learning	
	Rule, The error correction delta rule.	
UNIT-5	Multilayer Perceptron Networks and error back propagation algorithm,	12
	Radial Basis Functions Networks. Decision Tree Learning: Introduction,	
	Example of classification decision tree, measures of impurity for	
	evaluating splits in decision trees, ID3, C4.5, and CART decision trees,	
	Pruning the tree, strengths and weak ness of decision tree approach.	
	Total	60

- 1. "Probability and Statistics for Machine Learning: A Textbook ",Charu C. Aggarwal, Publications: Springer-2024
- 2. Applied Machine Learning, M.Gopal, McGrawHillEducation, 2019.
- 3. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- 4. Machine Learning: An Algorithmic Perspective, Stephen Marsland, Taylor & Francis (CRC) 1st Edition-2014.

Reference Books:

- 1. "Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata", Giovanni Cerulli, , Publications: Springer-2023
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009. (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
- 4. Machine Learning Methods in the Environmental Sciences, Neural Networks, William WHsieh, Cambridge Univ Press. *1* edition (August 31,2009).
- 5. Richardo. Duda, Peter E. Hart and David G. Stork, pattern classification, John Wiley & Sons Inc., 2nd Edition-2001.

Web Resources:

- 1. https://www.geeksforgeeks.org/machine-learning/statistics-for-machine-learning/
- 2. https://www.youtube.com/watch?v=E0Hmnixke2g

II Semester	DEEP LEARNING L	L	T	P	C	
		3	1	0	4	Ì

Course Objectives:

The objective of this course is to cover the fundamentals of neural networks as well as some advanced topics such as recurrent neural networks, long short-term memory cells and convolution neural networks.

- ➤ Understand the structure and functioning of biological and computational neurons.
- > Apply empirical risk minimization and regularization techniques.
- > Understand second-order methods for efficient neural network training.
- > Understand recurrent neural networks and backpropagation through time.
- Analyze state-of-the-art deep learning trends in AI research.

Course Outcomes: At the end of the course, student will be able to:

		Knowledge						
		Level(K)#						
CO1	Understand the structure of biological and computational neurons,	K2						
	perceptron models, and the fundamentals of perceptron learning and linear							
	separability.							
CO2	Understand and explore feed forward networks Gain a mathematical	K2						
	Understanding of deep learning approaches, algorithms, and paradigms.							
CO3	Apply deep learning techniques, including neural networks and advanced							
	models, to real-world applications in various domains like computer vision,							
	Natural language processing, and speech recognition.							
CO4	Apply concepts of RNNs, LSTMs, CNNs, and generative models like							
	RBMs to design and analyze deep learning architectures for sequential and							
	Image data.							
CO5	Analyze and implement advanced deep learning models such as recurrent	K4						
	neural networks, convolutional neural networks, and generative models for							
	Complex data processing.							

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	Н	L	Н	Н	L	Н
CO3	M	M	Н	Н	Н	Н
CO4	Н	L	Н	Н	M	Н
CO5	Н	M	Н	Н	M	Н

UNIT	CONTENTS	Contact					
		Hours					
UNIT-1	Basics: Biological Neuron, Idea of computational units, McCulloch-Pitts	12					
	Unit and Thresholding logic, Linear Perceptron, Perceptron Learning						
	Algorithm, Linear separability, Convergence theorem for Perceptron						
	Learning Algorithm.						
UNIT- 2	Feedforward Networks: Multilayer Perceptron, Gradient Descent,	12					
	Backpropagation, Empirical Risk Minimization, regularization, auto						
	acoders. Deep Neural Networks: Difficulty of training deep neural						
	networks, Greedy layer wise training.						
UNIT-3	NIT-3 Better Training of Neural Networks: Newer optimization methods for						
	neural networks (Ada grad, ada delta, rms prop, adam, NAG), second						
	rder methods for training, Saddle point problem in neural networks,						
	Regularization methos (dropout, drop connect, batch normalization).						
UNIT-4	Recurrent Neural Networks: Back propagation through time, Long Short-	12					
	Term Memory, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional						
	RNNs. Convolutional Neural Networks: LeNet, AlexNet. Generative						
	models: Restrictive Boltzmann Machines (RBMs), Introduction to MCMC						
	and Gibbs Sampling, gradient computations in RBMs, Deep Boltzmann						
	Machines.						
UNIT-5	Recent trends: Variational Autoencoders, Transformers, GPT Applications:	12					
	Vision, NLP, Speech.						
	Total	60					

- 1. "Deep Learning: Foundations and Concepts", by Christopher M. Bishop 2024.
- 2. Deep Learning, Ian Good fellow and Yoshua Bengio and Aaron Courville, MITPress, 2016.

Reference Books:

- 1. Neural Networks: A Systematic Introduction, RaúlRojas, 1996.
- 2. Pattern Recognition and Machine Learning, Christopher Bishop, 2007.
- 3. Deep Learning with Python, François Chollet, Manning Publications, 2017.

Web Resources

- 1. https://www.geeksforgeeks.org/nlp/feedforward-neural-network/
- 2. https://www.geeksforgeeks.org/nlp/feedforward-neural-network/
- 3. https://www.youtube.com/watch?v=tUoUdOdTkRw

II- Semester	MATHEMATICS FOR MACHINE LEARNING	L	T	P	C
		3	1	0	4

Course Objectives: From the course the student will learn

- > Develop a Strong Foundation in Linear Algebra and Analytic Geometry.
- > Apply Analytical and Geometric Concepts to Solve Real- World Problems.
- Master Techniques for Solving Systems of Linear Equations and Matrix Computations.
- > Understand the Fundamentals of Vector Calculus and Their Applications.
- Explore Probability Theory and Optimization for Applied Mathematical Modeling.

Course Out comes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level
CO1	Understand and apply linear mappings and transformations	K2
CO2	Apply orthogonal projections and understand projection operators	К3
CO3	Compute the determinant and trace of any square matrix and Decomposition	К3
CO4	Differentiate univariate functions and compute higher-order derivatives	K3
CO5	Apply Baye's theorem to update posterior probabilities in discrete or	K3
	Continuous domains.	

11 0		1 (9			
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	Н	L	Н
CO2	M	L	M	Н	L	Н
CO3	Н	L	M	Н	L	Н
CO4	M	L	M	Н	L	M
CO5	Н	M	Н	Н	M	Н
CO6						

UNIT	CONTENTS	Contact Hours
UNIT-1	Linear Algebra: Systems of Linear Equations, Matrices, Solving	12
	Systems of Linear Equations, Vector Spaces, Linear Independence,	
	Basis and Rank, Linear Mappings, Affine Spaces	
UNIT-2	Analytic Geometry: Norms, Inner Products, Lengths and Distances,	12
	Angles and Orthogonality, Ortho normal Basis, Orthogonal Complement,	

	Inner Product of Functions, Orthogonal Projections, Rotations	
UNIT-3	Matrix Decompositions: Determinant and Trace, Eigenvalues and Eigenvectors, Cholesky, Decomposition, Eigende composition and Diagonalization, Singular Value Decomposition, Matrix Approximation, Matrix Phylogeny	12
UNIT-4	Vector Calculus: Differentiation of Univariate Functions, Partial Differentiation and Gradients, Gradients of Vector-Valued Functions, Gradients of Matrices, Useful Identities for Computing Gradients, Back propagation and Automatic Differentiation, Higher-Order Derivatives, Linearization and Multivariate Taylor Series	12
UNIT-5	Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule, and Bayes' Theorem, Summary Statistics and Independence, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variables/Inverse Transform Continuous Optimization: Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers, Convex Optimization	12
	Total	60

- 1. "Mathematics for Machine Learning", Marc Peter Deisenroth, A.Aldo Faisal and Cheng Soon Ong, Cambridge University Press -2020
- 2. "Engineering Mathematics I: Matrices and Calculus", Dr. A. Singaravelu, Meenakshi Agency, -2020
- 3. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2ndEdition, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer- 2017.

Reference Books:

- 2. "Essential Math for AI", Hala Nelson, O'Reilly Media -2023
- 3. Machine Learning: An Applied Mathematics Introduction, Paul Wilmott, Panda Ohana Publishing- 2019.

Web Resources:

- 1. https://www.geeksforgeeks.org/maths/linear-algebra/
- 2. https://www.youtube.com/watch?v=1XlT3Y2oyAU&list=PLU6SqdYcYsfI7Ebw_j-Vy8YKHdbHKP9am

II Semester	CLOUD COMPUTING	L	T	P	C
		3	0	0	3

Course Objective:

- > To implement Virtualization.
- > To implement Task Scheduling algorithms.
- ➤ Apply Map Reduce concept to applications.
- > To build Private Cloud.
- > Broadlyeducatetoknowtheimpactofengineeringonlegalandsocietalissues involved.

Course Out comes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Understand the fundamentals of network-centric computing, cloud models,	K2
	Ethical concerns, and challenges in distributed systems.	
CO2	Analyze cloud infra structure, platforms, applications, and paradigms to	K4
	Identify opportunities and challenges in various domains.	
CO3	Apply virtualization techniques and cloud scheduling policies to manage	К3
	And allocate cloud resources effectively.	
CO4	Evaluate cloud storage systems and assess cloud security risks, privacy	K5
	concerns, and protective mechanisms.	
CO5	Evaluate own organizations' needs for capacity building and training in	K5
	cloud computing-related IT areas.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	M	M	Н
CO2	Н	M	Н	M	Н	M
CO3	Н	M	Н	Н	M	Н
CO4	M	M	Н	M	Н	Н
CO5	M	Н	M	L	Н	M

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Introduction: Network centric computing, Network centric content, peer-	12
	to -peer systems, cloud computing delivery models and services, Ethical	
	issues, Vulnerabilities, Major challenges for cloud computing.	
	Parallel and Distributed Systems: Introduction, architecture, distributed	

	systems, communication protocols, logical clocks, message delivery rules,	
	concurrency, model concurrency with Petri Nets.	
UNIT-2	Cloud Infrastructure: At Amazon, The Google Perspective, Microsoft Windows Azure, Open Source Software Platforms, Cloud storage diversity, Inter cloud, energy use and ecological impact, responsibility sharing, user experience, Software licensing. Cloud Computing: Applications and Paradigms: Challenges for cloud, existing cloud applications and new opportunities, architectural styles, workflows, The Zookeeper, The Map Reduce Program model, HP Concloud, biological research.	12
UNIT-3	Cloud Resource virtualization: Virtualization, layering and virtualization, virtual machine monitors, virtual machines, virtualization-full and para, performance and security isolation, hardware support for virtualization, Case Study: Xen, Blades. Cloud Resource Management and Scheduling: Policies and Mechanisms, Applications of control theory to task scheduling, Stability of a two-level resource allocation architecture, feedback control based on dynamic thresholds, coordination, resource bundling, scheduling algorithms, fair queuing, start time fair queuing, cloud scheduling subject to deadlines, Scheduling Map Reduce applications, Resource management and dynamic application scaling.	12
UNIT-4	Storage Systems: of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system. Apache Hadoop, Big Table, Megastore (text book 1), Amazon Simple Storage Service(S3) (Text book 2). Cloud Security: Cloud security risks, security—a top concern for cloud users, privacy and privacy impact assessment, trust, OS security, Virtual machine security, Security risks.	12
UNIT-5	Cloud Application Development: Amazon Web Services: EC2 — instances, connecting clients, security rules, launching, usage of S3 in Java, Installing Simple Notification Service on Ubuntu 10.04, Installing Hadoop on Eclipse, Cloud based simulation of a Distributed trust algorithm, Cloud service for adaptive data streaming (Text Book 1). Google: Google App Engine, Google Web Toolkit(TextBook2). Microsoft: Azure Services Platform, Window slive, Exchange Online, Share Point Services, Microsoft Dynamics CRM (Text Book 2).	12
	Total	60

Text Books:

- 1. "Cloud Computing: Concepts, Technology, and Architecture", Thomas Erl, Ricardo Puttini, Zaigham Mahmood, 2nd Edition 2023
- 2. Cloud Computing, Theory and Practice, Dan CMarinescu, M K Elsevier.
- 3. Cloud Computing, A Practical Approach, Anthony T Velte, Toby JVelte, Robert Elsenpeter, TMH.

Reference Books:

1. Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar Buyya, Christen vecctiola, S Tammaraiselvi, TMH

Web Resources:

- 1. https://www.youtube.com/watch?v=UBVVq-xz5i0
- 2. https://aws.amazon.com/what-is/cloud-infrastructure/
- 3. https://www.geeksforgeeks.org/software-engineering/cloud-computing-infrastructure/
- 4. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html

II Semester	REINFORCEMENT LEARNING	L	T	P	C
		3	0	0	3

Course Objective:

To provide students with comprehensive knowledge of reinforcement learning fundamentals, from basic exploration-exploitation problems to advanced deep RL algorithms, enabling them to design, implement, and evaluate intelligent agents for sequential decision-making tasks.

- ➤ Understand the fundamental concepts, elements, and limitations of reinforcement learning.
- > Evaluate Partially Observable MDPs (POMDPs) using belief states and basic formulations.
- > Understand Monte Carlo methods for prediction and control in model-free RL
- > Understand function approximation techniques in RL for large and continuous state spaces.
- Analyze imitation learning methods including behavior cloning, IRL, and GAIL.

Course Out comes: At the end of the course, student will be able to:

CO	Course Outcome	Knowledge
		Level(K)#
CO1	Understand the fundamentals of reinforcement learning, exploration- exploitation trade-offs, and solve multi-armed bandit problems using various action selection strategies.	K2
CO2	Formulate sequential decision-making problems as Markov Decision Processes and apply dynamic programming techniques to find optimal policies in known environments.	K3
CO3	Implement model-free reinforcement learning algorithms including Monte Carlo methods, temporal-difference learning (SARSA, Q-learning), and eligibility traces for learning optimal behavior through interaction.	K3
CO4	Design and develop deep reinforcement learning systems using function approximation, deep Q-networks, policy gradient methods, and actor-critic architectures for complex, high-dimensional problems.	K4
CO5	Evaluate and apply advanced RL techniques including model-based methods, multi-agent systems, hierarchical reinforcement learning, and imitation learning to solve real-world problems.	K5

11 0	1 0					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	M	L	M
CO2	Н	M	Н	Н	L	Н
CO3	M	L	Н	M	L	Н
CO4	Н	M	Н	Н	M	Н
CO5	M	Н	M	L	M	M

UNIT	CONTENTS	Contact Hours
UNIT-1	Reinforcement Learning , Elements of Reinforcement Learning, Limitations and Scope, Types of Tasks, The Exploration-Exploitation Dilemma	12
	Multi-Armed Bandit Problems: The k-Armed Bandit Problem- Action Selection Methods - Greedy and ε-greedy methods - Optimistic initialization - Bound action selection - Upper Confidence Bound (UCB) - Thompson Sampling - Regret analysis - Associative Search (Contextual bandits), Non-stationary bandits	
UNIT-2	Markov Decision Processes: Components of MDP - The Markov Property Types of MDP - Policies and Value Functions - Optimal Value Functions - Optimality and Approximation	12
	Dynamic Programming (Planning with a Known Model): Policy Evaluation - Policy Improvement - Policy Iteration - Value Iteration - Asynchronous DP	
	Partially Observable MDPs (POMDPs): Basic concepts and formulation Belief states	
UNIT-3	Model-Free Reinforcement Learning Monte Carlo Methods: Concepts and Characteristics - Monte Carlo prediction (estimating $V\pi$) - First-visit and every-visit MC - Estimation of action values - Monte Carlo control - ε -soft/ ε -greedy policies - Off-policy Monte Carlo via importance sampling	12
	Temporal-Difference Learning: TD prediction: TD(0) - Comparison: TD vs Monte Carlo vs Dynamic Programming - On-policy TD control: SARSA - Off-policy TD control: Q-learning - Expected SARSA Eligibility Traces and n-Step Returns: Forward vs backward view - n-step TD learning - TD(λ) and eligibility traces - Sarsa(λ), Q(λ)	
UNIT-4	Deep Reinforcement Learning	12
	Function Approximation in RL: Large/continuous state spaces - Linear function approximation and feature design - Non-linear approximation (neural networks) - Batch vs online learning - Convergence and stability issues - Architectures in RL: CNNs (vision), RNNs/LSTMs (memory)	
	Deep Q-Networks (DQN): Neural function approximation for Q-values - Experience replay - Target networks - Double DQN - Dueling DQN - Prioritized Experience Replay	
	Policy Gradient Methods: Policy parameterization - Policy Gradient Theorem - REINFORCE (Vanilla Policy Gradient) - Variance reduction:	

	Baselines and advantage functions	
	Actor-Critic Methods: Structure and intuition - Advantage Actor-Critic (A2C) - Asynchronous Advantage Actor-Critic (A3C) - Proximal Policy Optimization (PPO) - Deep Deterministic Policy Gradient (DDPG) - Soft Actor-Critic (SAC)	
UNIT-5	Model-Based Reinforcement Learning: Dyna-Q architecture - Model learning and planning - Model predictive control in RL	12
	Multi-Agent Reinforcement Learning: Types of agent interactions - Learning paradigms: Independent learning, joint-action learning - Centralized Training with Decentralized Execution (CTDE) - Key challenges: Non-stationarity, coordination, scalability - Value-Based and Policy-Based MARL	
	Hierarchical Reinforcement Learning: Semi-Markov Decision Processes (SMDPs) - Options framework - MAXQ value function decomposition - Feudal Networks (FuNs) - Hierarchical DQN (h-DQN) - Hierarchical Actor-Critic (HAC)	
	Imitation Learning: Behavior Cloning - Inverse Reinforcement Learning (IRL) - Generative Adversarial Imitation Learning (GAIL)	
	Emerging Topics (Overview): Offline RL: Conservative Q-Learning (CQL) - Meta-Reinforcement Learning: Key concepts	
	Total	60

- 1. "Deep Reinforcement Learning Hands-On", (Third Edition) by Maxim Lapan-2024
- 2. Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning-An Introduction",2nd Edition, The MIT Press, 2018.
- 3. Marco Wiering, Martijn van Otterlo Reinforcement Learning: State-of-the-Art (Adaptation, Learning, and Optimization (12)) 2012th Edition.

Reference Books:

- 1. "Multi-Agent Reinforcement Learning: Foundations and Modern Approaches", by Stefano V. Albrecht, Filippos Christianos & Lukas Schäfer -2024
- 2. Vincent François-Lavet, Peter Henderson, Riashat Islam, An Introduction to Deep Reinforcement Learning (Foundations and Trends(r) in Machine Learning), 2019.

Web Resources

- 1. https://www.youtube.com/watch?v=lfHX2hHRMVQ
- 2. https://www.youtube.com/watch?v=NFo9v_yKQXA&list=PLzvYlJMoZ02Dxtwe-MmH4nOB5jYlMGBjr
- 3. https://www.geeksforgeeks.org/deep-learning/deep-q-learning/
- 4. https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871

II Semester	GENERATIVE AI	L	T	P	C
		3	0	0	3

Course Objectives:

- > Understand the principles and concepts underlying Generative AI.
- > Explore various types of generative models and their applications.
- > Developpracticalskillsinimplementingandtraininggenerative models.
- > Evaluate the performance and limitations of different generative AI techniques.
- > AnalyseethicalconsiderationsandemergingtrendsinGenerativeAI.

Course Outcomes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Understand the basics of generative AI, its applications, and the role of	K2
	Probability in data generation and style transformation.	
CO2	Apply the building blocks of deep neural networks, including CNNs and	К3
	RNNs, to handle vision and sequence- based data	
CO3	Evaluate and implement generative adversarial networks (GANs) for image	K5
	Generation using various advanced GAN architectures.	
CO4	Apply generative models such as GANs and auto encoders to create	К3
	Deep fakes and understand their operational work flows and features.	
CO5	Understand generative models used in music composition, including LSTMs	K2
	and Muse GAN, and explore emerging applications in generative AI.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	M	L	M
CO2	Н	M	Н	Н	L	Н
CO3	M	M	Н	M	M	Н
CO4	Н	M	Н	Н	M	Н
CO5	M	Н	M	L	Н	M

UNIT	CONTENTS	Contact
		Hours
UNIT-	Introduction to Generative Al: "Drawing" Data from Models	12
1	Applications Of AI, the rules of probability, why use generative models, Style transfer And image transformation.	

UNIT-2	Building Blocks of Deep Neural Networks Perceptron's — a brain in a	12				
	function, multi-layer perceptron's and backpropagation, Varieties of					
	networks: Convolution and recursive, Networks for seeing:					
	Convolutional architectures, Networks for sequence data RNNs and					
	LSTMs					
UNIT-3	Image Generation with GANs, The taxonomy of generative models	12				
	Generative adversarial networks, Vanilla GAN, Improved GANs,					
	Progressive GAN					
UNIT-4	Deep fakes with GANs, Deep fakes overview, Modes of operation, Key	12				
	feature set, High-level work flow, Replacement using auto encoders, Re-					
	enactmentusingpix2pix					
UNIT-5	Composing Music with Generative Models Getting started with music	12				
	generation, Music generation using LSTMs, Music generation using					
	GANs,Muse GAN—poly phonic music generation, Emerging					
	applications In generative AI					
	Total	60				

- 1. "Generative Deep Learning (2nd Edition)", by David Foster Publicatios: Oreilly media, 2023
- 2. Generative AI with Python and Tensor Flow 2, Joseph Babcock, Raghav Bali.
- 3. Hands-On Generative Adversarial Networks with Keras, Rafael Valle, PacktPublishing.

Reference Books:

1. GANs in Action: Deep Learning with Generative Adversarial Networks by Jakub Langr & Vladimir Bok-2019

Web Resources:

- 1. https://www.youtube.com/watch?v=RAa55G-oEuk
- 2. https://www.youtube.com/watch?v=MZmNxvLDdV0
- 3. https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network building blocks.htm
- 4. https://ishwaryasriraman.medium.com/neural-networks-the-building-blocks-of-deep-learning-bce361c995b9
- 5. https://www.geeksforgeeks.org/machine-learning/neural-networks-a-beginners-guide/

II Semester	COMPUTER VISION	L	T	P	C
		3	0	0	3

Course Objectives:

- Understand the principles of pinhole cameras and image formation.
- Analyze local and global shading models for photometric applications.
- > Understand image segmentation techniques using clustering and graph-theoretic methods.
- Learn model fitting techniques such as the Hough Transform for lines and curves.
- Apply affine camera models and photogrammetry for 3D reconstruction.

Course Out comes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Recall and understand the fundamental principles of radiometry, shading,	K1
	And color in image formation using pinhole camera models.	
CO2	Apply concepts of lighting, shading, and color perception to analyze how	К3
	Light interacts with surfaces in computer vision applications.	
CO3	Apply stereo vision and clustering techniques for image segmentation and	К3
	multi-view geometry in computer vision.	
CO4	Apply probabilistic models such as the Hough Transform, EM algorithm,	К3
	And Kalman filtering for segmentation, fitting, and tracking in dynamic	
	scenes.	
CO5	Apply geometric camera models and calibration techniques, including	
	model-based vision methods, for applications like mobile robotics and	К3
	Medical image registration.	

11 0	1 0					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	M	L	Н	M	L	Н
CO3	M	M	Н	Н	M	Н
CO4	Н	M	Н	Н	M	Н
CO5	Н	M	Н	M	Н	Н

UNIT-1 Pinhole Cameras Radiometry - Measuring Light: Light in Space, Light on Surfaces, Important Special Cases Sources, Shadows, and Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo Interreflections: Global Shading Models UNIT-2 COLOR AND IMAGE REPRESENTATION Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color A Model for Image Color, Surface Color from Image Color The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras UNIT-4 SEGMENTATION AND CLUSTERING Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection, Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness UNIT-5 MODEL-BASED VISION AND CAMERA CALIBRATION 12 Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Consistency of Consistency Curved Surfaces and Alignment	UNIT	CONTENTS	Contact Hours
UNIT-2 COLOR AND IMAGE REPRESENTATION Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color UNIT-3 GEOMETRY OF MULTIPLE VIEWS The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras UNIT-4 SEGMENTATION Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection, Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness UNIT-5 MODEL-BASED VISION AND CAMERA CALIBRATION Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case Study: Registration in	UNIT-1	Surfaces, Important Special Cases Sources, Shadows, and Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric	12
The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras UNIT-4 SEGMENTATION AND CLUSTERING Segmentation by Clustering: What Is Segmentations: Shot Boundary Detection, Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness UNIT-5 MODEL-BASED VISION AND CAMERA CALIBRATION Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case Study: Registration in	UNIT-2	COLOR AND IMAGE REPRESENTATION Color: The Physics of Color, Human Color Perception, Representing Color,	12
Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection, Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness UNIT-5 MODEL-BASED VISION AND CAMERA CALIBRATION 12 Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case Study: Registration in	UNIT-3	The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using	
Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case Study: Registration in	UNIT-4	Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection, Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering Segmentation by Fitting a Model: The Hough Transform, Fitting Lines,	
Total 60	UNIT-5	Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice Tracking with Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case Study: Mobile Robot Localization Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by Pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case Study: Registration in Medical Imaging Systems, Curved Surfaces and Alignment	

Text Books:

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski 2nd Edition, 2022.
- 2. Handbook of Image Processing and Computer Vision: Volume 1 From Energy to Image by Arcangelo Distante & Cosimo Distante 1st Edition, 2020.
- 3. David A.Forsyth and Jean Ponce: Computer Vision—A Modern Approach, PHI Learning (Indian Edition), 2009.

Reference Books:

- 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008. 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

Web Resources

- 1. https://www.youtube.com/watch?v=oALeFTm7-ZI&list=PLTBdjV_4f-EKTxkbejHedLAM62thMLZ9_
- 2. https://bowenbz.github.io/posts/SLAM-CV-MVG/

II Semester	QUANTUM COMPUTING	L	T	P	С	
		3	0	0	3	1

Course Objectives:

This course covers the basic concept so quantum computing and problem-solving approach using finite dimensional mathematics.

- Understand basic algebra, matrix operations, vectors, and vector spaces relevant to quantum computing.
- ➤ Understand quantum states, superposition, and entanglement.
- Learn the construction and functioning of quantum circuits.
- > Understand Shor's algorithm for factoring and its implications.
- Analyze the impact of quantum computing on classical cryptographic techniques.

Course Out comes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Understand the foundational concepts of linear algebra, complex numbers,	K2
	And set theory relevant to quantum computing.	
CO2	Understand basic principles of quantum physics, quantum theory, and	K2
	Entanglement essential for quantum computation.	
CO3	Understand the architecture and hard ware components of quantum	K2
	computers, including qubits, gates, and decoherence challenges.	
CO4	Understand the structure and logic behind key quantum algorithms such as	K2
	Deutsch-Jozsa, Shor's, and Grover's algorithms.	
CO5	Understandtheimplicationsofquantumcomputingonclassicalasymmetric	
	cryptographic algorithms and their security.	K2

11 0		1 0	•			
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	L	M
CO2	L	L	Н	M	L	M
CO3	M	L	Н	Н	M	Н
CO4	Н	M	Н	Н	M	Н
CO5	Н	M	Н	M	Н	Н

UNIT	CONTENTS	Contact					
		Hours					
UNIT-1	Introduction to Essential Linear Algebra: Some Basic Algebra, Matrix	12					
	Math, Vectors and Vector Spaces, Set Theory. Complex Numbers:						
	Definition of Complex Numbers, Algebra of Complex Numbers,						
	Complex Numbers Graphically, Vector Representations of Complex						
	Numbers, Pauli Matrice, Transcendental Numbers.						
UNIT-2	Basic Physics for Quantum Computing: The Journey to Quantum,	12					
	Quantum Physics Essentials, Basic Atomic Structure, Hilbert Spaces,						
	Uncertainty, Quantum States, Entanglement. Basic Quantum Theory:						
	Further with Quantum Mechanics, Quantum Decoherence, Quantum						
	Electrodynamics, Quantum Chromodynamics, Feynman Diagram						
	Quantum Entanglement and QKD, Quantum Entanglement,						
	Interpretation, QKE.						
UNIT-3	Quantum Architecture: Further with Qubits, Quantum Gates, More with	12					
	Gates, Quantum Circuits, The D-Wave Quantum Architecture.						
	Quantum Hardware: Qubits, number of Qubits Needed, Addressing						
	Decoherence,						
	Topological Quantum Computing, Quantum Essentials.						
UNIT-4	Quantum Algorithms: Algorithm, Deutsch's Algorithm, Deutsch-Jozsa	12					
	Algorithm, Bernstein-Vazirani Algorithm, Simon's Algorithm, Shor's						
	Algorithm, Grover's Algorithm.						
UNIT-5	Current Asymmetric Algorithms: RSA, Diffie-Hellman, Elliptic Curve.	12					
	The Impact of Quantum Computing on Cryptography: A symmetric						
	Cryptography, Specific Algorithms, Specific Applications.						
	Total	60					

- 1. "Quantum Computing: An Applied Approach", Jack D. Hidary 2nd Edition 2021
- 2. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press.
- 3. Dr. Chuck Easttom, Quantum Computing Fundamentals, Pearson.

Reference Books:

- 1. Quantum Computing for Computer Scientists, Noson S.Yanofsky and MircoA. Mannucci.
- 2. Principles of Quantum Computation and Information, BenentiG., Casati G.andStriniG.,
- 3. An Introduction to Quantum Computing Algorithms, PittengerA.O.,

Web Resources

- 1. youtube.com/watch?v=tsbCSkvHhMo&pp=ygURUXVhbnR1bSBjb21wdXRpbmc%3D
- 2. https://www.youtube.com/watch?v=hyctIDPRSqY
- 3. https://www.spinquanta.com/news-detail/how-to-learn-quantum-physics-a-beginners-guide20250116105706

II Semester	SOFT COMPUTING	L	T	P	C
		3	0	0	3

Course Objectives:

To introduce the concepts in Soft Computing such as Artificial Neural Networks, Fuzzy logic-based systems, genetic algorithm-based systems and their hybrids.

- > Understand different activation functions and their roles in network behavior.
- > Apply training algorithms to improve neural network performance.
- > Study lambda-cuts, value assignments, and rank ordering in fuzzy systems.
- ➤ Understand fuzzy propositions and truth tables in fuzzy logic.
- > Understand the fundamentals of genetic algorithms and their applications.

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level(K)#
CO1	Understand the fundamentals of soft computing, artificial neural networks, neuron models, and basic learning mechanisms.	K2
CO2	Analyze and compare different perceptron architectures and training algorithms including Adaptive Linear Neuron and Backpropagation Network.	K4
CO3	Recall basic concepts of fuzzy logic including fuzzy sets, relations, membership functions, and fuzzification methods.	K1
CO4	Understand fuzzy inference systems, rule formation, and hybrid neuro- fuzzy systems such as Mamdani and Sugeno models.	K2
CO5	Apply genetic algorithms and hybrid systems to optimization problems, including genetic-neuro and genetic-fuzzy rule-based systems.	K3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	M	L	M
CO2	Н	L	Н	Н	L	Н
CO3	M	L	M	M	L	M
CO4	Н	L	Н	M	M	Н
CO5	Н	M	Н	Н	Н	Н

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Introduction to Soft Computing, Artificial neural networks, biological neurons, Basic models of artificial neural networks, Connections, Learning, Activation Functions, McCulloch and Pitts Neuron, Hebb network	12
UNIT-2	Perceptron networks, Learning rule, Training and testing algorithm, Adaptive Linear Neuron, Back propagation Network, Architecture, Training algorithm.	12
UNIT-3	Fuzzy logic, fuzzy sets, properties, operations on fuzzy sets, fuzzy relations, operations on fuzzy relations, Fuzzy membership functions, fuzzification, Methods of membership, value assignments, intuition, inference, rank ordering, Lambda–cuts for fuzzy sets, Defu zzification methods.	12
UNIT-4	Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules, Decomposition of rules, Aggregation ofrules, Fuzzy Inference Systems, Mamdani and Suge notypes, Neuro-fuzzy hybrid systems, characteristics, classification.	12
UNIT-5	Introduction to genetic algorithm, operators in genetic algorithm, coding, selection, cross over, mutation, stopping condition for genetic algorithm flow, Genetic-neuro hybrid systems, Genetic Fuzzy rule-based system.	12
	Total	60

- 1. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications, Snehashish Chakraverty, Arup K. Sahoo, Dhabaleswar Mohapatra-2024
- 2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing–JohnWiley&Sons,2007.
- 3. Timothy J.Ross, Fuzzy Logic with engineering applications, JohnWiley&Sons,2016.

Reference Books:

- 1. N.K.Sinhaand M.M.Gupta, Soft Computing & Intelligent Systems: Theory& Applications-Academic Press /Elsevier. 2009.
- 2. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc. 1998.
- 3. R.Eberhart and Y.Shi, Computational Intelligence: Concepts to Implementation, Morgan Kaufman/Elsevier, 2007.

- 4. Driankov D., Hellendoorn H. and Reinfrank M., An Introduction to Fuzzy Control Narosa Pub., 2001.
- 5. Bart Kosko, Neural Network and Fuzzy Systems-Prentice HallInc., Engle wood Cliffs, 1992.
- 6. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning Addison Wesley, 1989.

Web Resources

- 1. https://pravin-hub-rgb.github.io/BCA/resources/sem5/sc/unit1/index.html
- 2. https://www.geeksforgeeks.org/software-engineering/need-for-soft-computing/
- 3. https://onlinecourses.nptel.ac.in/noc22 cs54/preview
- 4. https://www.youtube.com/watch?v=BgsCP0a0RXg&list=PL4gu8xQu0_5Ix4FzEQ kMzi46sPu-8-7tM
- 5. https://www.youtube.com/watch?v=K7S3TgfqnX0&list=PLFW6lRTa1g81F7CJ-CdlsyWKKAa43T62j

II Semester	DEEP LEARNING LAB	L	T	P	C	
		0	1	2	2	Ī

Course Objective:

To enable students to design, implement, and evaluate deep learning models for diverse real-world applications using state-of-the-art techniques and tools.

- > Implement MLP and CNN models for image classification (MNIST, Dogs vs Cats).
- > Design neural networks for binary (IMDB) and multi-class (Reuters) text classification.
- > Apply neural networks for regression tasks like Boston Housing price prediction.
- ➤ Utilize pre-trained CNNs (VGG16) and transfer learning for image classification.
- > Implement NLP techniques including one-hot encoding, word embeddings, and RNNs for sequence modeling

Course Outcomes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Implement deep neural networks to solve real world problems	К3
CO2	Utilizepre-trainedmodelslikeVGG16forefficientimagerecognition	К3
CO3	Apply embedding techniques to represent textual data for natural	K4
	Language processing tasks	
CO4	Interpret the results of two different deep learning models	K4
CO5	Choose appropriate pre-trained model to solve real time problem	K4

[#]BasedonsuggestedRevisedBTL

Mapping of course out comes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	Н	Н	Н	M
CO2	M	M	Н	Н	M	L
CO3	Н	M	Н	Н	Н	M
CO4	Н	M	Н	Н	Н	M
CO5	Н	M	Н	Н	Н	M

(Please fill the above with Levels of Correlation, viz., L,M,H)

Software Packages required:

- Keras
- TensorFlow
- PyTorch

S.No	List of Experiments					
1	Implement multilayer perceptron algorithm for MNIST Hand written Digit Classification.					
2	Design a neural network for classifying movie reviews (Binary Classification) using IMDB dataset.					
3	Design a neural Network for classifying news wires (Multi class classification) using Reuters dataset.					
4	Design a neural network for predicting house prices using Boston Housing Price dataset.					
5	Build a Convolution Neural Network for MNIST Hand written Digit Classification.					
6	Build a Convolution Neural Network for simple image (dogs and Cats) Classification.					
7	Useapre-trained convolution neural network (VGG16) for image classification.					
8	Implement one hot encoding of words or characters.					
9	Implement word embeddings for IMDB dataset.					
10	Implement a Recurrent Neural Network for IMDB movie review classification problem.					

- 1. Deep Learning with Python, Third Edition by François Chollet-2024
- 2. Neural Networks and Deep Learning: A Textbook by Charu C. Aggarwal-2023
- 3. Reza Zadeh and Bharath Ramsundar, "Tensor flow for Deep Learning", O'Reilly publishers, 2018.References:

Web Resources

- 1. https://www.kaggle.com/code/santosh1974/reuters-newswires-nn-multi-classification
- 2. https://colab.research.google.com/github/alzayats/Google_Colab/blob/master/3_6_classifyin g_newswires.ipynb
- 3. https://www.kaggle.com/code/okmldl/classifying-newswires-multiclass-classification
- 4. https://www.youtube.com/watch?v=S4R1157ItP8
- 5. https://github.com/fchollet/deep-learning-with-python-notebooks

II Semester	MACHINE LEARNING LAB	L	T	P	C
		0	1	2	2

Course Objective:

To equip students with practice al knowledge of machine learning techniques for data preprocessing, classification, clustering, and visualization using Python.

- ➤ Implement dimensionality reduction techniques like PCA and SVD using NumPy.
- > Apply concept learning algorithms including FIND-S and Candidate-Elimination on CSV training data.
- ➤ Build and test supervised learning models such as Decision Trees, Backpropagation Neural Networks, and Naïve Bayes classifiers.
- ➤ Implement Bayesian networks, EM clustering, k-Means, k-NN, and Locally Weighted Regression for prediction and data analysis.
- ➤ Perform data visualization using Matplotlib, Pandas, and Seaborn for scatter plots, line charts, and histograms.

Course Outcomes: At the end of the course, student will be able to:

		Knowledge
		Level(K)#
CO1	Implement dimensionality reduction techniques like PCA and SVD to	K3
	Preprocess and analyses data.	
CO2	Apply FIND-S and Candidate-Elimination algorithms to derive specific	K4
	And consistent hypotheses from training data in .CSV files	
CO3	Build classification models using decision trees (ID3), k-NN, and	K3
	Bayesian classifiers, and evaluate their performance on various data sets.	
CO4	Explore clustering techniques, including k-Means and the EM algorithm,	K4
	To analyse data quality and patterns.	
CO5	Visualize and interpret data insights using regression models, scatter	K4
	plots, line charts, and histograms with Python libraries like Matplotlib,	
	Seaborn, and Pandas.	

#BasedonsuggestedRevisedBTL

Mapping of course out comes with program out comes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	Н	Н	Н	M
CO2	Н	M	Н	Н	Н	M
CO3	Н	M	Н	Н	Н	M
CO4	Н	M	Н	Н	Н	M
CO5	Н	M	Н	Н	Н	M

(Please fill the above with Levels of Correlation, viz.,L,M,H)

S.No	List of Experiments
1	Implement Principal Component Analysis (PCA)and Singular Value Decomposition (SVD) using NumPy.
2	Implement and demonstrate the FIND-S algorithm for finding the most specific
	hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
3	For a given set of training data examples store dina.CSV file, implement and
	Demonstrate the Candidate-Elimination algorithm to output a description of the set of All hypotheses consistent with the training examples.
4	Write a program to demonstrate the working of the decision tree based ID3 algorithm.
	Useanappropriatedatasetforbuildingthedecisiontreeandapplythisknowledgeto Classify an example.
5	BuildanArtificialNeuralNetworkbyimplementingtheBackpropagationalgorithm And test the same using appropriate datasets.
6	Write a program to implement the naïve Bayesian classifier for a sample training data
	set store data. CSV file. Compute the accuracy of the classifier, considering few test
	datasets.
7	Assuming a set of documents that need to be classified, use the naïve Bayesian
	Classifier model to perform this task. Built-in Java classes/API can be used to write the
	program. Calculate the accuracy, precision, and recall for your data set.
8	Write a program to construct a Bayesian network considering medical data. Use this
	model to demonstrate the diagnosis of heart patients using standard Heart Disease Data
	Set. You can use Java/Python ML library classes/API.
9	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set
	for clustering using k-Means algorithm. Compare the results of these two algorithms
	and comment on the quality of clustering. You can add Java/Python ML library
	classes/API in the program.
10	Writeaprogramtoimplementk-NearestNeighbouralgorithmtoclassifytheirisdata
	set. Print both correct and wrong predictions. Java/Python ML library classes can be
	used for this problem.
11	Implement the non-parametric Locally Weighted Regression algorithm in order to fit
	datapoints. Select appropriate data set for your experiment and draw graphs.
12	Create the following plots using Matplotlib, Pandas Visualization, Sea born on iris
	dataset, wine reviews datasets.
	a. Scatter Plot
	b. Line chart
	c. Histogram

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd Edition) by Aurélien Géron- 2022
- 2. Deep Learning and Machine Learning Python Data Structures and Mathematics Fundamental: From Theory to Practice by Silin Chen et al.-2024
- 3. Applied Machine Learning, M.Gopal, McGrawHillEducation, 2019.
- 4. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MITPress, 2012.

Reference Books:

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning, Springer 2009. (freely available online)
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

Web Resources

- 1. https://www.geeksforgeeks.org/machine-learning/naive-bayes-classifiers/
- 2. https://vtupulse.com/machine-learning/naive-bayesian-classifier-in-python/
- 3. https://vtupulse.com/machine-learning/k-nearest-neighbour-algorithm-in-python/
- 4. https://stackoverflow.com/questions/1730600/principal-component-analysis-in-python

III Semester	RESEARCH METHODOLOGY AND IPR			P	C
		3	0	0	3

Course Objectives:

- > Understand the meaning, sources, and scope of a research problem.
- Learn effective approaches for literature studies and critical analysis.
- Understand international cooperation and frameworks in IPR
- Learn procedures for licensing and technology transfer.
- > Understand the administration and management of the patent system

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level(K)#
CO1	Identify and formulate research problems, design investigative	K2
	approaches, and apply appropriate data collection and analysis methods.	
CO2	Conduct effective literature reviews, maintain research ethics, and	K3
	Prepare structured technical reports and research proposals.	
CO3	Explain the nature and types of Intellectual Property Rights and	K2
	Processes for patenting innovations nationally and internationally.	
CO4	Analyze patent rights, licensing processes, technology transfer, and the	K4
	Use of patent databases.	
CO5	Evaluate recent developments in IPR, including biological systems,	K5
	software, and traditional knowledge through case studies.	

[#]BasedonsuggestedRevisedBTL

Mapping of course outcomes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M			
CO2		Н				
CO3			M			M
CO4			M			M
CO5			M			M
CO6						

(Please fill the above with Levels of Correlation, viz., L, M,H)

UNIT	CONTENTS	Contact				
		Hours				
UNIT-1	Meaning of research problem, Sources of research problem, Criteria	12				
	Characteristics of a good research problem, Errors in selecting are					
	search problem, Scope and objectives of research problem. Approaches					
	of investigation of solutions for research problem, data collection,					
	analysis, interpretation, Necessary instrumentations.					
UNIT-2	Effective literature studies approaches, analysis Plagiarism, Research	12				
	ethics, Effective technical writing, how to write report, Paper					
	Developing a Research Proposal, Format of research proposal, a					
	presentation and Assessment by are view committee.					
UNIT-3	Nature of Intellectual Property: Patents, Designs, Trade and Copyright.	12				
	Process of Patenting and Development: technological research,					
	innovation, patenting, development. International Scenario:					
	International cooperation on Intellectual Property. Procedure for grants					
	of patents, Patenting under					
	PCT					
UNIT-4	Patent Rights: Scope of Patent Rights. Licensing and transfer of	12				
	technology. Patent information and databases. Geographical Indications.					
UNIT-5	New Developments in IPR: Administration of Patent System. New	12				
	developments in IPR; IPR of Biological Systems, Computer Software					
	etc. Traditional knowledge Case Studies, IPR and IITs					
	Total	60				

- 1. Research Methodology: Best Practices for Rigorous, Credible, and Impactful Research by Herman Aguinis 2024.
- **2.** Intellectual Property, Patents, Trademarks, and Copyright in a Nutshell by Arthur R. Miller, Michael H. Davis & Dana Neacsu 7th edition, **2023**.

REFERENCES BOOKS:

- (1) Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".
- (2) Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- (3) Ranjit Kumar,2nd Edition, "Research Methodology: A Step by Step Guide for beginners".
- (4) Halbert, "Resisting Intellectual Property", Taylor & FrancisLtd,2007.
- (5) Mayall, "Industrial Design", Mc Graw Hill, 1992.

- (6) Niebel, "Product Design", Mc GrawHill, 1974.
- (7) Asimov, "Introduction to Design", Prentice Hall, 1962.
- (8) Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age,2016.T.Ramappa, "Intellectual Property Rights Under WTO", S.Chand,2008.

Web Resources

- 1. https://researcher.life/blog/article/what-is-a-research-problem-types-and-examples/
- 2. https://www.youtube.com/watch?v=ImVYrrwXU s
- 3. https://thelegalschool.in/blog/scope-of-patent-law-in-india