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2023). Education remains a timeless subject of global sig-
nificance (Liao et al. 2021). Within higher education insti-
tutions (Sobnath et al. 2020), students play a crucial role 
as stakeholders, and their achievements are of utmost sig-
nificance (Oladipupo and Samuel 2024). The landscape of 
education has undergone substantial changes over time, par-
ticularly with a significant shift occurring due to the emer-
gence of the COVID-19 pandemic (Thomas et al. 2022).

The integration of next-generation educational technol-
ogies, such as AIEd has expanded the scope of computer 
applications in education (Ouyang et al. 2023) (Deo et al. 
2020). Recognizing the significance of student engage-
ment as a cornerstone of effective learning, efforts have 
been directed towards leveraging real-time signals from 
students to enhance their learning experiences (Miller et al. 
2021) (Yue et al. 2019). Predictive analytics within ITS can 
anticipate student challenges and provide timely interven-
tions, such as hints or encouragement to improve learning 

1 Introduction

The rise of computer and network technology has led to the 
widespread adoption of online learning in higher educa-
tion (Sashank et al. 2023), presenting a novel approach to 
learning (Wang et al. 2022) (Ayouni et al. 2021). Research 
efforts focusing on the development of ITS show promise in 
enhancing educational experiences (Al Mamun and Lawrie 
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Abstract
Predicting student engagement is crucial for identifying the potential mental health challenges that may hinder aca-
demic performance and overall well-being. Early detection and intervention are essential to prevent detrimental effects 
on academic performance and overall quality of life. Effective strategies for predicting student engagement may involve 
analyzing various factors, this study employs a student engagement prediction model based on Improved LinkNet and 
Bidirectional Long Short-Term Memory (ImLN-Bi-LSTM), which considers face expression image and data features. Pre-
processing, feature extraction, classification, and an engagement prediction mechanism are all included in the system. Face 
Expression image and data inputs perform individual pre-processing and feature extraction via distinctive approaches. The 
resultant features are then given to a hybrid classification model, utilizing Improved LinkNet and Bi-LSTM (Bidirectional 
Long Short-Term Memory) classifiers. The outcomes of ImLN-Bi-LSTM are the prediction results of student engagement 
in online learning. Comprehensive analyses including simulation and experimental assessments are conducted to validate 
the suggested ImLN-Bi-LSTM method. Moreover, at 80% of training data, the ImLN-Bi-LSTM model achieved a superior 
prediction accuracy of 0.951, and an F-measure of 0.905 which surpasses the result of traditional methods. The ImLN-Bi-
LSTM model has the potential for use in online learning applications, and this study provides a solid and proven method 
for predicting student engagement.
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outcomes (Ruiz et al. 2022). The experience of human emo-
tion is subjective and conscious, occurring when an indi-
vidual aspect is either internal or external stimuli (Ngai et 
al. 2022).

While OL is increasingly prevalent in school education 
systems, its effectiveness is influenced by factors such as stu-
dent attention spans and interactivity, which pose challenges 
in traditional classroom settings (Song et al. 2020). Despite 
difficulties in precisely capturing student engagement and 
interactivity in OL contexts, online education offers sig-
nificant advantages in facilitating resource sharing and pro-
moting educational equity (Xue and Niu 2023) (Wan et al. 
2019) (Figueroa-Cañas and Sancho-Vinuesa 2020). These 
factors present challenges, particularly when compared to 
traditional classroom environments where direct interac-
tion between students and teachers is more readily achiev-
able. One of the primary challenges in OL is maintaining 
student engagement over extended periods (Savchenko and 
Makarov 2022) (Aydoğdu 2020). Additionally, the level of 
interactivity, or lack thereof, in online learning platforms, 
can hinder effective communication and collaboration 
among students and between students and instructors. This 
reduced interaction can impact learning outcomes and the 
overall effectiveness of the educational experience.

Additionally, advancements in ML enable the recogni-
tion of emotions through bio-signals, although real-time 
analysis remains challenging with typical equipment. DL 
technology has emerged as a prominent research area, par-
ticularly in image feature classification using advancements 
in computer software and hardware, AI technologies, and 
digital image processing (Abdulkader et al. 2023). The cur-
rent emphasis on DL covers a wide range of areas, such 
as text, pronunciation, and visual components, and pres-
ents opportunities for enhancing teaching strategies. An 
automated approach to engagement prediction is essential, 
however, current image-based techniques face a key limi-
tation in that they rely solely on spatial data from single 
images, which can lead to unstable and inconsistent results 
over time. Moreover, most existing engagement recognition 
datasets are limited in size, restricting progress and mak-
ing it difficult to compare different methods (Selim et al. 
2022). Although DL approaches like CNN-based image 
feature classification have shown promise, their application 
in student engagement detection is hindered by challenges 
such as poor generalizability across diverse datasets and 
data imbalance, which can negatively impact model per-
formance (Flanagan et al. 2022). To overcome these chal-
lenges, this study proposes the ImLN-Bi-LSTM model, 
designed to improve student engagement prediction in OL 
environments. By combining enhanced feature extraction 
methods with advanced deep learning techniques, the model 
effectively captures subtle patterns in facial expressions and 

behavioral data, offering improved accuracy and robustness 
across diverse datasets. Thus, the model that has been intro-
duced offers three unique contributions, which are briefly 
explained as follows.

 ● Improved SLBT include refining the feature extraction 
process to retrieve relevant features more effectively. 
This enhancement focuses on improving the LBP fea-
ture by incorporating binary patterns exclusively de-
rived from neighboring pixel intensity values.

 ● Extracting the improved entropy-based feature effi-
ciently during the feature extraction phase. Through the 
utilization of this Improved Deng entropy measure, the 
influence of alterations in data distribution on entropy 
calculations can be reduced, enabling accurate quantifi-
cation of uncertainty or disorder within datasets.

 ● Employing a hybrid model in the classification phase 
with improved LinkNet and Bi-LSTM models. In the 
Improved LinkNet model, an improved loss function is 
employed in the decoder block. This improvement can 
capture intricate details within the input data. Further-
more, the utilization of an improved loss function within 
the decoder block aids in refining the model”s training 
process which leads to more precise predictions.

The remaining structure of the paper is organized as fol-
lows: Sect. 2 provides a comprehensive review of exist-
ing works. Section 3 then explores the ImLN-Bi-LSTM 
model”s architecture procedures. Sect. 4 then conducts 
experimental assessments of the suggested model. Lastly, 
Sect. 6 offers a summary of the entire procedure along with 
a closing observation.

2 Literature review

In 2023, (Ruiz et al. 2022) has proposed a video-based trans-
fer learning approach to predict problem outcomes for stu-
dents working with an intelligent tutoring system (ITS). In 
2023, (Abdulkader et al. 2023) has presented an EBSAAS 
model. With this combination, the system uses the VGG-19 
training structure for the extraction of features and to detect 
the attentiveness levels of the students. In 2023, (Ouyang 
et al. 2023) proposed an AI performance prediction method 
was integrated with learning analytics methods to increase 
student learning effects in a collaborative learning context. 
In 2023, (Al Mamun and Lawrie 2023) investigated an 
instructional design”s influence on the student-content inter-
action process within inquiry-based learning activities. In 
2022, (Wang et al. 2022) suggested the CRRNN model for 
short-period activity characteristics and long-term changing 
patterns to predict potential at-risk students.
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In 2023, (Xue and Niu 2023) has introduced a multi-out-
put hybrid ensemble model from the SLCP to predict grades 
and student performance across various subjects. In 2021, 
(Ngai et al. 2022) developed a multimodal approach that 
utilized 2-channel EEG signals and the eye modality along 
with the face modality to improve recognition performance. 
In 2022, (Savchenko and Makarov 2022) employed an NN 
model for recognizing the students” emotions based on 
video images of their faces. In 2023, (Buono et al. 2023) has 
used a Long Short-Term Memory (LSTM) network for pre-
dicting student involvement levels using facial action units, 
gaze, and head positions. In 2023, (Gupta et al. 2023) has 
proposed a deep learning-based method that employs facial 
emotions to assess online learners” attention in real-time. 
In 2023, (Hossen and Uddin 2023) has developed a special-
ized system aimed at identifying and understanding student 
behaviors using XGBoost during online learning sessions. 
In 2025, (Naveen et al. 2025) has proposed a novel real-time 
detection framework that leveraged Transformer-enhanced 
Feature Pyramid Networks (FPN) with Channel-Spatial 
Attention (CSA), referred to as BiusFPN_CSA. However, 
the model is limited by its lack of integration of multimodal 
data inputs to provide a more comprehensive understanding 
of student behaviors.

3 Proposed framework for student 
engagement prediction via face emotion & 
data features

Predicting student engagement in online learning involves 
employing various data analysis techniques and models to 
anticipate how actively students will participate in their edu-
cational activities. For this purpose, this research proposed 
an ImLN-Bi-LSTM model for predicting student engage-
ment in OL, which offers a more accurate, and reliable sys-
tem. The model integrates two benchmark datasets namely 
the CKPLUS dataset (https:,, www.kaggle.com, datasets, 
shawon10, ckplus. xxxx), which provides facial expression 
images, and the OULAD dataset (https:,, www.kaggle.com, 
datasets, anlgrbz, student-demographics-online-education-
dataoulad. xxxx), which contains student performance data. 
These datasets are treated as a unified input to support a 
multimodal analysis combining face expression images and 
cognitive data. These two types of inputs including facial 
expression images and student data are used to capture 
engagement. The proposed approach begins with a pre-pro-
cessing step, which can be applied separately to each modal-
ity, where Gaussian filtering is used to enhance the quality 
of facial images, while min–max normalization standard-
izes the data. Then, the feature extraction is also performed 
independently, where the facial features are derived using 

I-SLBT and LGXP, while data features are extracted using 
I-EF and statistical features. The extracted features from 
both modalities are combined and then fed into a hybrid 
classification model that combines Improved LinkNet and 
Bi-LSTM for spatial feature analysis and temporal pat-
tern recognition. The output from this process is used to 
predict student engagement levels, offering a comprehen-
sive assessment based on both face expression images and 
performance-based indicators. Specifically, Fig. 1 shows 
the overall architecture of the proposed ImLN-Bi-LSTM 
approach for the prediction of student”s engagement in OL.

3.1 Pre-processing

The suggested model initiates with a crucial pre-process-
ing phase, designed to optimize two distinct inputs such as 
face images and data. For face images, Gaussian filtering 
is employed to enhance clarity, while min–max normaliza-
tion is applied to the data input to standardize its values 
within a specified range. Consider the input face image be 
iface image and data be idata.

3.1.1 Pre-processing on face image via gaussian filtering

Gaussian filtering is a widely used method for noise reduc-
tion in image processing. Since the conventional filtering 
methods often distort subtle facial textures and perform 
inconsistently under varying lighting conditions or image 
compression. To mitigate these issues, Gaussian filtering is 
employed as a preprocessing step. This technique effectively 
attenuates high-frequency noise, resulting in a smoother 
image with reduced artifacts. The improved image quality 
facilitates more accurate subsequent processes such as fea-
ture extraction and engagement prediction. Gaussian filter-
ing operates by using a Gaussian kernel, a two-dimensional 
distribution function. During the convolution process, the 
Gaussian kernel is slid over each pixel in the image, and the 
results of the Gaussian distribution across those locations 
are used to determine the weighted average of the nearby 
pixels. The input face image iface image is given as an input 
for this Gaussian filtering technique (Sekehravani et al. 
2020) and its mathematical calculation for noise elimina-
tion is described in Eq. (1).

Gaussianfilter (a, b) = 1
2πStd2 exp

(
−a2 + b2

2Std2

)
 (1)

From Eq. (1), a and b denotes the horizontal and vertical axis 
distance and Std implies the standard deviation. Therefore, 
the input face image iface image is pre-processed by Gauss-
ian filtering and its outcome is denoted as, pface image.
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exact range, typically between 0 and 1. It is also known as 
min–max scaling. The traditional normalization techniques 
often assume that the input data follows a normal distribu-
tion. However, in cases where the data is skewed or con-
tains outliers, standardization may yield inaccurate results. 

3.1.2 Pre-processing on input data via minmax 
normalization technique

Min–max normalization is a technique of data preprocess-
ing usually applied to rescale mathematical features to an 

Fig. 1 Overall framework of sug-
gested ImLN-Bi-LSTM approach 
for predicting student engagement
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of landmark points, followed by PCA on these points. In the 
training set, any shape vector can be expressed in Eq. (3).

W ≈ W + Ev
s Fs (3)

Fs = EvT

s

(
W − W

)
 (4)

From Eq. (3), the mean of the shape is represented by 
W , Ev

s  includes the vectors of eigen for largest eigenval-
ues (κs) and the parameter model of the shape is implied 
as Fs( s means shape in Fs). It is likely to evaluate the 
model parameter shape related to an image by rewriting 
Eq. (4). In texture modeling, a shape-free patch is cre-
ated by transforming every set of training images into the 
mean shape. Texture modeling in AAM is done using the 
shape-free patch direct intensity values. On the other hand, 
SLBT uses LBP on the shape-free patch to extract fea-
tures that are noise-invariant and illuminated. Assume a 
3 × 3 window with a central pixel (rc, sc), grc denotes the 
value of intensity and Q = q (gri) denotes the local texture 
here gri (i = 0, 1, 2, 3, 4, 5, 6, 7) related to grey values for 
nearby pixels. These pixels are thresholded via center value 
grc as q (a (gr0 − grc) , ..., a (gr7 − grc)) and the function 
is described in Eq. (5).

a (n) =
{

1 , n > 0
0 , n ≤ 0  (5)

LBP(rc,sc) =
7∑

i=0
a (gri − grc)2i (6)

By the way, the above Eqs. (5) and (6) are the conventional 
LBP equation. The conventional LBP may not adequately 
represent the richness and diversity of texture information 
in the data. Therefore, an Improved LBP (Bavkar et al. 
2022) is proposed to overcome these issues, and its expres-
sion is defined in Eq. (7).

ILBP =




7∑
i=0

a (gri − grc) 2i + t.2gri−1

( 7∑
i=0

gri−1
)

∗ grc


 (7)

From Eq. (7), the pixel value of the neighbor and center is 
denoted as gri and grc, the function t is defined in Eq. (8).

t =




1
0
1
0

if TM ≥ gri and AM ≤ grc
else if AM ≥ gri and AM > grc
else if AM < gri and gri ≤ grc
else if TM ≤ gri and gri ≥ grc

 (8)

To overcome these limitations, Min–Max normalization is 
employed. This method is particularly advantageous when 
dealing with features that vary in scale, as it ensures that 
all features contribute equally to the analysis. Additionally, 
it preserves the original distribution and shape of the data, 
thereby maintaining the intrinsic relationships among fea-
tures and contributing to the precise extraction of features. 
The process involved in this normalization technique is cal-
culating the minimum and maximum values of individual 
features in the dataset. By the way, the input data idata is 
provided as an input for this technique (Henderi et al. 2021). 
Then, the following formula is applied for each data point in 
the feature as given in Eq. (2).

Anew = A − min (A)
max (A) − min (A)  (2)

From Eq. (2), normalized results from the new value are 
implied as Anew, the old value is denoted as A, dataset max-
imum and the minimum value is represented as max (A) 
and min (A). By using min–max normalization, the range 
of values for each feature is constrained to the interval [0, 
1], with the minimum value mapped to 0 and the maximum 
value mapped to 1. Consequently, the input data idata is 
pre-processed by min–max normalization and its outcome 
is indicated as, pdata.

3.2 Feature extraction

During this stage, four relevant features are extracted inde-
pendently from pre-processed inputs, such as pre-processed 
face images pface image and pre-processed data, pdata.

3.2.1 Feature extraction on pre-processed face image

At this phase, the pre-processed face image pface image 
undergoes feature extraction, where appropriate features 
like I-SLBT and LGXP are retrieved.

3.2.1.1 I-SLBT In this work, an improved SLBT method is 
proposed, which focuses on local binary patterns to effec-
tively capture local texture and shape features in images. In 
SLBT, each pixel”s encoding depends on its intensity rela-
tive to neighboring pixels (Lakshmiprabha and Majumder 
xxxx). Here, the pre-processed face image pface image is 
provided as input for this phase. Assume pface image denote 
N  set of training images with W  landmark points of the 
shape. Shape variations are acquired through the alignment 
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LGXPη,o =

[
s∑

i=1
2i−1.LGXP i

η,o

]

decimal

 (14)

From Eqs. (13) & (14), the central pixel”s location in the 
gabor phase is denoted as pic, orientation and scale is 
implied as o and η, the neighborhood size is represented as 
s and the pattern evaluated between center grc and neighbor 
pixel gri is expressed as LGXP i

η,o (i = 1, 2, ..., s), also its 
calculation is defined in Eq. (15).

LGXP i
η,o = Q (ϕη,o (grc)) ⊗ Q (ϕη,o (gri)) , i = 1, 2, ..., s (15)

From Eq. (15), phase is implied as ϕη,o, operator of LXP is 
signified as ⊗ which is depend on the operator of XOR as 
given in Eq. (16). Furthermore, the operator of quantization 
is denoted as Q and the phase quantized code is calculated 
based on the specified quantity of phase ranges as outlined 
in Eq. (17).

m ⊗ n =
{

0 , if m = n
1 , else i.e., Q (ϕη,o) = i; (16)

if
360 ∗ i

pr
≤ ϕη,o <

360 ∗ (i + 1)
pr

, i = 0, 1, ..., pr − 1 (17)

Here, the amount of phase range is implied as pr. Following 
the definition of the pattern, a pattern map is calculated for 
every Gabor kernel. Subsequently, these pattern maps are 
partitioned into sub-blocks of non-overlapping. The histo-
grams of sub-blocks at different scales and orientations are 
aggregated to generate the LGXP descriptor for the input 
face image as outlined in Eq. (18).

hi =
[
hi

η0,o0,1
, ..., hi

η0,o0,n; ...; hi
η0−1,or−1,1,..., hi

η0−1,or−1,n

]
 (18)

From Eq. (18), the ith sub-block of the LGXP map of 
the histogram with o orientation and scale η is given as 
hi

η,o,i (i = 1, 2, ..., n). Thereby, the LGXP feature is sig-
nified as Iface image

LGXP . Finally, the facial features including 
I-SLBT and LGXP obtained from the preprocessed face 
image is represented as Fimg.

3.2.2 Feature extraction from pre-processed data

In this phase, pertinent features like statistical features and 
I-EF are retrieved from the pre-processed data pdata.

From Eq. (8), AM represents the arithmetic mean and TM 
denotes the Trimmed Mean. Following that, the TM expres-
sion is given in Eq. (9).

TM = 1
x − 2y

x−y∑
i=y+1

f
(
TM(i)

)
 (9)

Using Eq. (7), the center pixel grc of the LBP pattern can 
be attained. Consider K be the histogram feature of LBP 
for the images training set. Subsequently, texture model-
ling is applied via PCA similar to shape modelling given 
in Eq. (10).

Ft = ET
t

(
K − K

)
 (10)

From Eq. (10), the parameter of the texture model is implied 
as Ft, eigenvectors are denoted as Et, and the vector of the 
mean is notated as K. After that, the parameter of shape and 
texture vector is attained via Eq. (11). The weight calcula-
tion for each shape parameter is represented by the diagonal 
matrix Ds takes into account the differing units of shape 
and texture values. To derive the shape texture parameter, 
which governs texture, global, and local shape character-
istics which is employed in PCA on the merged parameter 
vector as described in Eq. (12).

Fst =
(

DsEs

Et

)
 (11)

c = ET
st

(
Fst − F st

)
 (12)

From Eq. (12), the parameter of the shape texture is signi-

fied as c. Thus, the I-SLBT feature is implied as Iface image
SLBT .

3.2.1.2 LGXP Utilizing the LXP operator to encode the 
Gabor stage into LGXPs makes it easier to retrieve texture 
information at different scales and orientations. Incidentally, 
the pre-processed image is given as input for this LGXP fea-
ture. To model an LGXP pattern, typically the phases are 
first quantized into a diverse range. Then, the phases of the 
central pixel and those of its neighbors are quantized via the 
LXP operator (Shanthi and Koppu 2023). Finally, the result-
ing binary labels are concatenated to form a local pattern of 
the central pixel which are in decimal and binary form, as 
described in Eq. (13) and (14).

LGXP feat
η,o (grc) =

[
LGXP s

η,o, LGXP s−1
η,o , ..., LGXP 1

η,o

]
binary (13)
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Step 1: This alternative formulation aims to address the 
variability in entropy values resulting from alterations in the 
data distribution.

IE =
(∑

wx (i) × Ei

)
−


−

∑
G⊆φ

m (G) log2

(
m (G)

2|G| − 1
e

|G|−1
|s|

)
 (23)

IE =


∑

wx (i) ∗
∑
G⊆φ

m (G) log2

(
m (G)

2|G| − 1
e

|G|−1
|s|

)
 (24)

From Eqs. (23) and (24), wx (i) = 2
(

1 − 1
1+exp(−Ei)

)
 

implies the weight function (Munagala and Kodati 2021), 
the function of mass is implied as m on the frame of φ dis-
cernment, the focal element of m is implied as G, the cardi-
nality of G is signified as |G|.

Step 2: By the way, the proposed entropy is satisfied via 
the entropy correction (Kermani and Plett xxxx) condition 
which is provided in Eq. (25).

|IE| < Ei (25)

From Eq. (25),IE and Ei denotes the Improved entropy 
and conventional entropy. Thus, the I-EF feature is achieved 
and its result is depicted as Idata

I−EF . Finally, the face fea-
tures (SLBT and LGXP features)Fimg are attained from 
pface image and the data features (Statistical features, and 
I-EF) Fdata are obtained from pdata are merged and totally 
signified as fei

d.

3.3 Classification via hybrid ImLN-Bi-LSTMmodel

In this phase, the extracted features fei
d derived from input 

face expression images and data are fed to the proposed 
hybrid classification model, which integrates the Improved 
LinkNet and Bi-LSTM models. Traditional models like 
CNNs excel at processing local patterns, but they often 
struggle with learning long-term temporal dependencies and 
may fail to capture the spectral relationships within mul-
timodal data. In contrast, the Bi-LSTM model effectively 
manages long-range temporal dependencies in the extracted 
features, allowing it to capture context from both past 
and future inputs. This ability significantly enhances the 
model”s capacity to identify and predict complex engage-
ment patterns. On the other hand, Improved LinkNet boosts 
prediction performance through its exceptional capability to 
capture both spectral and spatial information. By combin-
ing these two models, the proposed strategy leverages their 
complementary strengths, resulting in more precise and 
robust engagement predictions.

3.2.2.1 Statistical features Statistical features such as 
mean, median, and standard deviation are derived from the 
pre-processed data pdata.

Mean: It evaluates the average of the values in the data-
set (Toptaş and Hanbay 2021) as described in Eq. (19).

M = 1
a

a∑
i=1

pdata (19)

Median: It is a measure of central tendency that represents 
the middle value of a dataset when it is ordered from small-
est to largest (Abu et al. 2020). As indicated by Eq. (20), it 
splits the dataset in half evenly, with 50% of the values lying 
below and the other half above the median.

Median = j

2
 (20)

Standard deviation: It measures the distribution of values 
in a dataset, indicating how much the single values differ 
from the mean as defined as per Eq. (21).

Sdeviation =

√√√√1
a

a∑
i=1

(pdata − M)2 (21)

From above Equation, M  represents the mean and a implies 
the overall number of values within the dataset. Hence, the 
statistical features are obtained and its result is denoted as 
Idata

STf
.

3.2.2.2 I-EF An I-EF entropy is proposed which can capture 
complex relationships and dependencies within engagement 
data more effectively. Entropy is a metric for quantifying 
uncertainty in a dataset with a randomly generated variable 
having a probability mass function. Equation (22) outlines 
the conventional formulation of entropy (Yan and Deng 
2020) which provides a mathematical expression to capture 
the degree of disorder within the dataset in which the pre-
processed data pdata is given as an input.

Ei = −
Z∑

i=1
P

(
pdata

)
logB P

(
pdata

)
 (22)

In order to address the problem of reliance on the spread of 
data within a dataset, Eq. (24) suggests an enhanced Deng 
entropy. Here, the I-EF is performed via two steps.
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This process likely involves applying the soft sign function 
element-wise to the output of the batch normalization layer.

3.3.1.2 Decoder block The decoder block receives the out-
put from the encoder block as its input. The first convolu-
tional layer within the decoder block applies convolutional 
operations to the input features from the encoder. Similar, 
to the encoder block, batch normalization is applied to the 
output of convolution layer 1 to normalize and stabilize acti-
vations. In the context of the decoder block, sigmoid activa-
tion might be used to confirm that the outcome values are in 
the range suitable for representing probabilities, especially 
if the task involves binary classification or pixel-wise seg-
mentation. Then, the upsampling is performed as a process 
of increasing the spatial resolution of the feature map. Fol-
lowing upsampling, another convolutional layer (convolu-
tion layer 2) is applied to further refine the feature map. 
The outcome of Convolution Layer 2 is then subjected to 
batch normalization in order to stabilize and normalize the 
activations. After that, the Leaky ReLU activation function 
is used which permits a small, positive gradient when the 
input is negative. This is the final convolutional layer (con-
volution layer 3) within the decoder block. It further refines 
the features and prepares the output for the final prediction. 
Ultimately, an improved loss function is suggested, which 
may incorporate additional constraints or penalties to bet-
ter address the characteristics of the problem at hand, such 
as class imbalance or spatial coherence. Here, an improved 
loss function has been employed by combining the cosh 

3.3.1 Improved LinkNet model

In computer vision, LinkNet is a kind of CNN architecture 
that is frequently employed for semantic classification tasks 
(Ramasamy et al. 2023). The architecture of the conven-
tional LinkNet model is shown in Fig. 2.

Therefore, to classify the student engagement predic-
tion, an Improved LinkNet is used. This procedure is fully 
explained in the section that follows. Figure 3 displays the 
architectural diagram of the Improved LinkNet model.

3.3.1.1 Encoder block The input extracted features fei
d is 

given as an input for the encoder block. After that, zero pad-
ding is a technique used to pad the input feature map with 
zeros along the spatial dimensions (height and width) before 
applying convolution. This is an additional convolutional 
layer that is applied to the result of the preceding phase, just 
like Convolution Layer 1. Convolution Layer 2”s output is 
subjected to a second batch normalization layer in order to 
stabilize and normalize the activations. Next, the batch nor-
malization layer”s output is subjected, element by element, 
to the ReLU activation function. Similar to the initial zero 
padding, this step pads the feature map with zeros. This is 
the final convolutional layer (convolution layer 3) within 
the encoder block. From the given input feature map, more 
features are retrieved. After Convolution Layer 3, an addi-
tional batch normalization layer is added to stabilize and 
normalize the activations. Finally, Soft sign is an activation 
function that is similar to tanh but has a smoother gradient. 
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Fig. 2 Architecture of conventional LinkNet model
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input to the attention layer (Hamdi et al. 2022). The sig-
nificance of various feature map components is indicated by 
attention weights, which are calculated at each time by the 
attention layer. A weighted summation of the feature maps 
is then computed using the attention weights, with features 
with more attention weights contributing more to the final 
representation. Thus, the scores alignment expression is 
described by Eq. (28).

Scorest = tanh (Fem.WeAtt + BiAtt) (28)

where, the attention layer trainable weights and bias are 
denoted as WeAtt and BiAtt. Following that, the scores 
Scorest undergo normalization through the softmax func-
tion to derive attention weights δt as described in Eq. (29).

loss, Dice loss, and balanced cross-entropy as defined by 
Eq. (26) and (27).

IlossF un = [log (cosh (dice loss))] + Balanced cross entropy (26)

=




{
log

(
ef + e−f

2

) (
1 − 2qp̂ + 1

q + p̂ + 1

)}

+ [− (λ ∗ q log (q̂)) + (1 − λ) ∗ (1 − q) log (1 − q)]


 /2 (27)

From Eq. (27), λ = 1
2 , q̂ or p̂ implies the predicted value, 

and q or p denotes the actual value. Thereby, the outcome 
attained from this decoder layer that is feature map is 
denoted as Fem.

3.3.1.3 Attention layer The output of the decoder block or 
the final feature maps from the decoder may serve as the 

Fig. 3 Architecture model of 
Improved LinkNet model
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From Eqs. (31) and (32), ct denotes the current input with l 
units, fei

d represents the input, Hi implies the hidden state, 
and welstm signifies the weight. Thus, the result obtained 
from this Bi-LSTM model is denoted as Bii,d

LST M . By the 
way, the suggested ImLN-Bi-LSTM technique effectively 
classifies the student engagement prediction via face expres-
sion image and data inputs. Hence, the outcomes for the 
hybrid classification model that is tabulated in Table 1. Also, 
Table 2 shows the hyper-parameter settings of the classifier.

3.4 Engagement prediction

Predicting student engagement using an emotion index 
involves employing data-driven methods to anticipate stu-
dents” emotional states and participation levels in educa-
tional tasks. In the ImLN-Bi-LSTM model, four classes of 
emotions are identified, each further divided into engaged 
and not engaged categories. By the way, the four classes are 
(Distinction, Happy), (Withdrawn, Sad), (Fail, Fear), and 
(Pass, Surprise) as well as their labels are (0,1,2,3).

δt = Softmax (Scorest) (29)

Once attention weights are computed, the subsequent step 
involves the calculation of the context vector which is 
referred to as the attention vector as defined in Eq. (30). 
This operation entails the aggregation of T neurons via a 
weighted sum.

At =
T∑

i=1
δtNet (30)

From Eq. (30),Net denotes the neurons. Thereby, the 
Improved LinkNet model classifies the student engagement 
prediction that is denoted as Ii,d

linkNet.

3.3.2 Bi-LSTM model

The Bi-LSTM architecture comprises two interconnected 
layers with each Bi-LSTM predicting the sequence of each 
element based on the context of preceding and succeeding 
elements (Hamayel and Owda 2021). The forward func-
tion of the Bi-LSTM is characterized by l units as inputs 
and Hi as the number of hidden units that are computed via 
Eqs. (31), and (32). Figure 4 illustrates the architecture of the 
Bi-LSTM. Within the Bi-LSTM network, the hidden layer 
preserves two sets of values: one for the forward calculation 
(A) and another for the reverse calculation (A transpose). 
The outcome value y relies on both A and A transpose.

at
c =

l∑
j=1

fei
dwelstm

lc +
Hi∑

c,t>0
Bit−1

c′ wec′c (31)

at
c = ϕc

(
at

c

)
 (32)

Table 1 Outcomes from the ImLN-Bi-LSTM model
(Data, image) Target
(Pass, surprise) 0
(Withdrawn, sad) 1
(Fail, fear) 2
(Distinction, happy) 3

Table 2 Hyper-parameter setting of the classifier
Model Hyperparameter
ImLN-Bi-LSTM units:128, Drop-

out Rate:0.2, 
batch size = 128, 
epochs = 25, 
verbose = 1

Fig. 4 Architecture of the Bi-
LSTM model
 

1 3



Students’ engagement prediction in online learning context via face emotion and data features with improved…

this study focuses only on happy, sad, fearful, and surprised 
emotions.

4.2.2 Cognition data description

The Open University Online Learning Platform (VLE) is 
the source of the dataset. Distance learners use this platform 
to do a variety of tasks, including reading course materials, 
taking part in forum discussions, turning in assignments, 
and checking their grades. Consisting of 7 carefully cho-
sen courses, referred to as modules within the dataset, it 
distinguishes between presentations for semesters one and 
two. These are indicated by the letters “J” and “B” follow-
ing the respective years. Moreover, the dataset encompasses 
demographic particulars about the students, encompassing 
their location, age group, educational level, gender, and any 
reported handicaps. This dataset consists of labels such as 
distinction, withdrawn, fail, and pass.

Therefore, this study incorporates these two benchmark 
datasets having facial image data and cognition data, which 
are combined as a multimodal dataset and these details are 
assumed to be obtained from a single student for student 
engagement prediction. The training and testing details of 
the multimodal dataset are shown in Table 4.

4.3 Performance analysis

A thorough investigation was conducted to assess the effi-
cacy of both ImLN-Bi-LSTM and conventional strate-
gies in predicting students” engagement. This extensive 
examination involved evaluating a broad range of critical 
metrics, including “F-measure, Precision, Matthews Cor-
relation Coefficient (MCC), and Accuracy.” Additionally, 
the evaluation included Statistical assessment to afford 
deeper insights into the models” performance. The ImLN-
Bi-LSTM method”s effectiveness was further compared 

Utilizing the predicted emotions as input in the engage-
ment phase is determined and the engagement index is com-
puted via Eq. (33).

Engindex = Ep × Weemotion (33)

here, the probability of the emotion is signi-
fied as Ep i.e., Ep = Emotion Pr obability(

Emotion = (Distinction, happy) , (Withdrawn, Sad) ,

(Fail, fear) &
(Pass, Surprise)

)
 and its corresponding weight is 

denoted by Weemotion.
Subsequently, the targeted emotion with its correspond-

ing weight value is depicted in table 3.
Thus, the predicted emotion outcome is obtained by sat-

isfying one of three conditions i.e., (i) when the emotion 
index value is less than 0.3 weight value it is predicted as 
engaged, (ii) emotion is considered “not engaged” when 
its engagement index falls within the range of 0.3 to 0.6 
and (iii) if the weight value is greater than 0.6 it predicts as 
engaged. Therefore, the employed imln-bi-lstm model effi-
ciently predicts student engagement in ol and its result is 

denoted as P i,d
Linknet−Bilstm.

4 results and discussion

4.1 Simulation procedure

Python was used in the simulation of the suggested students” 
engagement prediction; the version used was “Python 3.7.” 
“11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40 GHz 
2.42 GHz” was the processor used for simulation, and the 
system has “16.0 GB” of RAM installed. Additionally, anal-
ysis for predicting students” engagement was carried out on 
CKPLUS (Facial image) (https:,, www.kaggle.com, datas-
ets, shawon10, ckplus. xxxx) and OULAD (data) (https:,, 
www.kaggle.com, datasets, anlgrbz, student-demographics-
online-education-dataoulad. xxxx).

4.2 Dataset description

4.2.1 Facial image data description

This dataset aims to categorize each facial expression into 
one of 7 emotions: “anger, contempt, disgust, fear, joy, 
sadness, and surprise.” It consists of 981 images used for 
this classification task. In this work, the anger, disgust and 
contempt labels are neglected because they occur rarely, so 

Table 3 Emotion and its weight values
Emotion Weight value
Pass, surprised 0.6
Withdrawn, sad 0.3
Fail, fear 0.3
Distinction, happy 0.6

Table 4 Training and testing details of the multimodal dataset
Training data (%) Number of training input Num-

ber of 
testing 
input

60 369 246
70 430 185
80 492 123
90 553 62
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et al. 2022), Mobile Network, RNN, DenseNet, XGBoost 
(Hossen and Uddin 2023), FPN_CSA_Trans_EH (Naveen 
et al. 2025), and LinkNet, which achieve accuracies around 
0.732, 0.614, 0.507, 0.558, 0.627, 0.653, and 0.629 respec-
tively. Similarly, the ImLN-Bi-LSTM model continues to 
lead at 90% of training data, outperforming other models 
with an F-measure of 0.951. This higher performance sug-
gests that the model is more effective at capturing the com-
plexities and patterns in student behavior that correlate with 
engagement.

against state-of-the-art techniques such as CNN (Ngai et al. 
2022) and NN (Savchenko and Makarov 2022) along with 
the traditional classifiers like Efficient Net, Mobile Network, 
RNN, DenseNet, and LinkNet. Moreover, the ImLN-Bi-
LSTM approach underwent comparison with IDBN + CNN 
(Maddu and Murugappan 2024). These comparisons were 
conducted using both the CKPLUS and OULAD datas-
ets, ensuring a comprehensive assessment across different 
datasets to gauge the robustness and generalizability of the 
methods. Additionally, Fig. 5 depicts the sample images that 
have undergone pre-processing, which are utilized in pre-
dicting students” engagement.

4.4 Comparative evaluation of performance 
measures

The performance metric analysis of an ImLN-Bi-LSTM 
model is compared against established methods such as 
Efficient Net, NN (Savchenko and Makarov 2022), CNN 
(Ngai et al. 2022), XGBoost (Hossen and Uddin 2023) 
and FPN_CSA_Trans_EH [47], Mobile Network, RNN, 
DenseNet, and LinkNet, is shown in Fig. 6. The accuracy 
outcome of each model over various rates of the training 
data is shown in Fig. 6a. The accuracy measure provides 
a quick and broad understanding of the model”s perfor-
mance by showing the proportion of correct predictions. 
The ImLN-Bi-LSTM model consistently exhibits higher 
accuracy than traditional methods. Specifically, with 60% 
of the training data, the ImLN-Bi-LSTM model achieves 
an accuracy of 0.892, surpassing other models such as Effi-
cientNet, NN (Savchenko and Makarov 2022), CNN (Ngai 

Fig. 6 Comparison of Performance 
Metric Analysis on ImLN-Bi-
LSTM Method vs. Conventional 
Techniques

 

Fig. 5 Images for Students” Engagement Prediction using CKPLUS 
dataset a Sample Images and b Gaussian Filter-based Pre-processed 
images
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(86.70%), NN (85.27%), CNN (82.84%), Mobile Network 
(82.39%), RNN (86.52%), DenseNet (83.93%), XGBoost 
(85.23%), FPN_CSA_Trans_EH (86.10%) and LinkNet 
(86.52%). Also, the proposed ImLN-Bi-LSTM has attained 
superior performance on accuracy across different k-values. 
Therefore, the proposed ImLN-Bi-LSTM exhibits outstand-
ing performance on generalization compared to other exist-
ing techniques in predicting student engagement.

4.7 Analysis of computational time

Table 7 presents the computational time (in seconds) for 
various models, highlighting the ImLN-Bi-LSTM as the 
most efficient with a processing time of 55.21 s, outper-
forming other models. In comparison, models like CNN and 
DenseNet require 66.2 s and 71.86 s, respectively, while 
EfficientNet and XGBoost take 88.2 s and 89.21 s, respec-
tively. On the other hand, the FPN_CSA_Trans_EH model 
requires the most time at 96.21 s. Moreover, MobileNetwork 
and RNN show moderate processing times of 82.01 s and 
80.62 s, respectively, while LinkNet performs with a time 
of 71.5 s. Overall, the ImLN-Bi-LSTM is a good option for 
real-time applications in dynamic online educational set-
tings because it not only performs competitively but also 
excels in computational efficiency.

4.5 Analysis of statistical test

Table 5 presents the results of statistical test analysis of the 
proposed ImLN-Bi-LSTM model against existing mod-
els using three tests: the T-test, Wilcoxon signed-rank test, 
and Friedman test, with a significance threshold set at 0.1. 
A p-value below this threshold indicates that the perfor-
mance difference between models is statistically significant. 
When compared to MobileNetwork, the p-values are 0.095 
(T-test), 0.077 (Wilcoxon), and 0.076 (Friedman), all below 
the threshold, confirming statistical significance. Similarly, 
comparisons with models such as EfficientNet, RNN, and 
XGBoost also yield p-values below 0.1 in the T-test, Wil-
coxon signed-rank test, and Friedman test, supporting the 
robustness of the proposed model. These results collectively 
indicate that the performance improvements observed with 
ImLN-Bi-LSTM are not due to random variation but are sta-
tistically meaningful, affirming the model”s effectiveness.

4.6 K-fold validation

Table 6 shows the k-fold validation of the recommended 
ImLN-Bi-LSTM model and the existing frameworks like 
Efficient Net, NN, CNN, Mobile Network, RNN, DenseNet, 
XGBoost and FPN_CSA_Trans_EH, and LinkNet. As a 
result, when k = 2, the suggested ImLN-Bi-LSTM technique 
has attained an accuracy of 93.72%. The value surpasses 
the outcomes of the existing techniques like Efficient Net 

Table 5 Analysis of statistical test
ImLN-Bi-LSTM Vs T-test Wilcoxon p-value Friedman p-value
EfficientNet 0.078 0.091 0.072
NN 0.099 0.091 0.095
CNN 0.094 0.082 0.093
MobileNetwork 0.095 0.077 0.076
RNN 0.080 0.076 0.077
DenseNet 0.098 0.089 0.075
LinkNet 0.077 0.097 0.077
FPN_CSA_Trans_EH 0.086 0.086 0.089
XGBoost 0.089 0.096 0.077

Table  6 K-fold validation of the ImLN-Bi-LSTM and the existing 
techniques
Methods K = 2 (%) K = 3 (%) K = 4 (%) K = 5 (%)
EfficientNet 86.70 86.71 86.93 82.84
NN 85.27 82.21 83.18 82.16
CNN 82.84 83.65 85.98 82.98
MobileNetwrok 82.39 85.09 85.46 83.65
RNN 86.52 82.05 83.67 85.33
DenseNet 83.93 83.23 86.36 82.27
Linknet 86.52 82.63 84.00 85.69
FPN_CSA_Trans_EH 86.10 83.09 84.52 85.77
XGBoost 85.23 83.67 83.50 84.12
ImLN-Bi-LSTM 93.72 91.19 92.98 91.65

Table 7 Analysis of computational time
Methods Time(s)
EfficientNet 88.2
NN 75.2
CNN 66.2
MobileNetwork 82.01
RNN 80.62
DenseNet 71.86
LinkNet 71.5
FPN_CSA_Trans_EH 96.21
XGBoost 89.21
ImLN-Bi-LSTM 55.21

Table  8 Assessment of the ImLN-Bi-LSTM model and the conven-
tional methods for space complexity
Methods Space complexity (KB)
EfficientNet 0.89
NN 0.45
CNN 0.45
MobileNetwork 0.21
RNN 0.36
DenseNet 0.21
LinkNet 0.33
FPN_CSA_Trans_EH 0.25
XGBoost 0.22
ImLN-Bi-LSTM 0.09
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existing models demonstrated significantly lower AUC val-
ues, underscoring the superior performance of the ImLN-
Bi-LSTM approach in predicting student engagement.

4.9.2 Feature analysis using SHAP

An Explainable AI (XAI) technique called Shapley Addi-
tive exPlanations (SHAP) uses game theory to understand 
model predictions by considering each characteristic as a 
player influencing the final result. It provides both local 
and global explanations, making it suitable for understand-
ing model behavior in student engagement prediction. The 
SHAP summary plots shown in Fig. 8 highlight the most 
influential features. In the beeswarm plot (Fig. 8a), Fea-
ture 202 has the greatest impact on predictions, with higher 
values of this feature associated with increased SHAP val-
ues, indicating a stronger contribution to predicting higher 
engagement. The average impact of the features on the 
model”s output is displayed in Fig. 8b as a bar plot. Feature 
35 has the highest overall significance, followed by Fea-
tures 32, 143, and others. These observations highlight the 

4.8 Analysis of space complexity

Space complexity analysis refers to the amount of memory 
required by a model to complete a task. The analysis of 
space complexity across various models used for student 
engagement prediction is shown in Table 8. As shown in 
the evaluation, the ImLN-Bi-LSTM exhibits the lowest 
space complexity of 0.09 KB. In contrast, traditional mod-
els such as EfficientNet (0.89 KB), NN and CNN (each at 
0.45 KB), DenseNet (0.21 KB), MobileNetwork (0.21 KB), 
RNN (0.36 KB), LinkNet (0.33 KB), FPN_CSA_Trans_EH 
(0.25 KB), and XGBoost (0.22 KB) also demonstrate higher 
space requirements than ImLN-Bi-LSTM. This substantial 
reduction in memory usage not only emphasizes the model”s 
compactness but also supports its suitability for deployment 
in real-time educational environments, without compromis-
ing predictive performance.

4.9 Performance comparison of ImLN-Bi-LSTM 
model in terms of pose, expression and color

Table 9 displays the results of an evaluation of the suggested 
ImLN-Bi-LSTM model”s performance using three distinct 
features: pose, expression, and color. Across all evaluation 
metrics, the color feature achieves the highest accuracy 
(0.912), sensitivity (0.881), and specificity (0.884), indi-
cating its strong capability in correctly identifying both 
engaged and non-engaged states. The proposed model in 
terms of color feature achieves highest F-measure at 0.884, 
reflecting a balanced performance in terms of precision and 
recall. Although expression features show the highest preci-
sion (0.875) and NPV (0.871), their overall performance is 
slightly lower than that of color. The pose feature performs 
comparably well, with the highest MCC (0.863). Overall, 
the analysis confirms that the ImLN-Bi-LSTM model per-
forms effectively across all features, with color features 
offering the most reliable and accurate results.

4.9.1 Analysis of ROC

Figure 7 illustrates the ROC curve analysis for the proposed 
ImLN-Bi-LSTM model, which is designed to predict stu-
dent engagement, compared against several existing mod-
els including EfficientNet, NN, CNN, MobileNet, RNN, 
DenseNet, LinkNet, FPN_CSA_Trans_EH, and XGBoost. 
The ROC curve is constructed by plotting the average TPR 
against the FPR across various threshold levels. For effective 
student engagement prediction, the model should achieve an 
area under the curve of 0.95 or higher. In particular, when 
the TPR was set to 0.92, the proposed ensemble model 
recorded an FPR of 0.014 and achieved an AUC of 0.95, 
indicating high predictive performance. In comparison, the 

Table  9 Performance evaluation of ImLN-Bi-LSTM using pose, 
expression and color
Metrics Pose (%) Expression (%) Color (%)
Accuracy 90.90 90.20 91.20
Sensitivity 85.10 86.20 88.10
Specificity 87.20 86.10 88.40
Precision 86.70 87.50 87.00
F-measure 86.70 87.10 88.40
MCC 86.30 85.50 85.30
NPV 85.80 87.10 87.00
FPR 12.80 13.90 11.60
FNR 14.90 13.80 11.90

Fig. 7 ROC analysis on ImLN-Bi-LSTM Method and Conventional 
Methods
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of Improved LinkNet and Bi-LSTM techniques processed 
these features distinguishing itself from traditional classi-
fiers. Additionally, engagement prediction was integrated 
into this ImLN-Bi-LSTM model ensuring precise outcomes. 
The efficacy of the suggested approach was confirmed by 
means of multiple experimental evaluations. Notably, the 
ImLN-Bi-LSTM model obtained a maximum accuracy of 
0.952, meanwhile, EfficientNet, NN, CNN, RNN, Mobile 
Network, DenseNet, and LinkNet achieved minimal accu-
racies around 0.832, 0.784, 0.813, 0.813, 0.802, 0.809, 
and 0.801 respectively, suggesting potential shortcomings 
in their ability to accurately identify engaged students. In 
future work, this study will incorporate real-time data from 
a diverse group of students to evaluate the performance and 
robustness of the model.
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significance of attributes for accurately predicting students” 
involvement in OL.

5 Practical implication

The proposed ImLN-Bi-LSTM model demonstrates out-
standing prediction performance for student engagement 
in online learning by leveraging facial images and related 
data. This makes it possible to identify at-risk students in a 
timely manner, enabling teachers to properly intervene and 
enhance academic results. However, the lack of comprehen-
sive investigation into data privacy (ie) the preservation of 
facial data over time introduces risks of data breaches and 
limited generalization across diverse student populations 
representing key limitations of the proposed study. Future 
work will address these issues by implementing privacy-
preserving techniques and integrating with real-time online 
educational platforms to enhance practical deployment in 
further studies.

6 Conclusion

To sum up, this study involved a number of steps, includ-
ing feature extraction, classification, pre-processing, and 
student involvement prediction. Preprocessing and extrac-
tion of features were done separately on the given input, 
which consisted of images and data with facial emotions 
on them. Within pre-processing, techniques like Gaussian 
Filtering and Minmax normalization were employed for 
image and data processing respectively. Feature extraction 
involved capturing relevant features from face expression 
images such as SLBT and LGXP-based features, along with 
statistical features and I-EF from data. These features were 
then subjected to a hybrid classification model for student 
engagement classification. The hybrid system, an integration 

Fig. 8 Feature analysis using 
SHAP values a Beeswarm plot and 
b bar plot
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